Increased levels of the matrix metalloproteinases (MMPs)-2 and -9 (also referred to gelatinase-A and -B, respectively) can be detected in the inflamed gut. We have recently shown that synthetic gelatinase blockage reduces colonic apoptosis and pro-inflammatory immune responses following murine Campylobacter (C.) jejuni infection. In order to dissect whether MMP-2 and/or MMP-9 is involved in mediating C. jejuni-induced immune responses, infant MMP-2-/-, MMP-9-/-, and wildtype (WT) mice were perorally infected with the C. jejuni strain B2 immediately after weaning. Whereas, at day 2 postinfection (p.i.), fecal C. jejuni B2 loads were comparable in mice of either genotype, mice expelled the pathogen from the intestinal tract until day 4 p.i. Six days p.i., colonic MMP-2 but not MMP-9 mRNA was upregulated in WT mice. Remarkably, infected MMP-2-/- mice exhibited less frequent abundance of blood in feces, less distinct colonic histopathology and apoptosis, lower numbers of effector as well as innate and adaptive immune cells within the colonic mucosa, and higher colonic IL-22 mRNA levels as compared to infected WT mice. In conclusion, these results point towards an important role of MMP-2 in mediating C. jejuni-induced intestinal immunopathogenesis.
Young KT , Davis LM, Dirita VJ: Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol 5, 665–679 (2007)
Dasti JI , Tareen AM, Lugert R, Zautner AE, Gross U: Campylobacter jejuni: a brief overview on pathogenicityassociated factors and disease-mediating mechanisms. Int J Med Microbiol 300, 205–211 (2010)
Guerry P , Szymanski CM: Campylobacter sugars sticking out. Trends Microbiol 16, 428–435 (2008)
Lane JA , Mehra RK, Carrington SD, Hickey RM: The food glycome: a source of protection against pathogen colonization in the gastrointestinal tract. Int J Food Microbiol 142, 1–13 (2010)
Kist M , Bereswill S: Campylobacter jejuni. Contrib Microbiol 8, 150–165 (2001)
Wakerley BR , Uncini A, Yuki N, Group GBSC, Group GBSC: Guillain–Barré and Miller Fisher syndromes –new diagnostic classification. Nat Rev Neurol 10, 537–544 (2014)
van Spreeuwel JP , Duursma GC, Meijer CJ, Bax R, Rosekrans PC, et al.: Campylobacter colitis: histological immunohistochemical and ultrastructural findings. Gut 26, 945–951 (1985)
Walker RI , Caldwell MB, Lee EC, Guerry P, Trust TJ, et al.: Pathophysiology of Campylobacter enteritis. Microbiol Rev 50, 81–94 (1986)
Masanta WO , Heimesaat MM, Bereswill S, Tareen AM, Lugert R, et al.: Modification of intestinal microbiota and its consequences for innate immune response in the pathogenesis of campylobacteriosis. Clin Dev Immunol, 526860 (2013)
Heimesaat MM , Bereswill S: Murine infection models for the investigation of Campylobacter jejuni–host interactions and pathogenicity. Berl Munch Tierarztl Wochenschr 128, 98–103 (2015)
Haag LM , Fischer A, Otto B, Grundmann U, Kühl AA, et al.: Campylobacter jejuni infection of infant mice: acute enterocolitis is followed by asymptomatic intestinal and extra-intestinal immune responses. Eur J Microbiol Immunol (Bp) 2, 2–11 (2012)
Heimesaat MM , Haag LM, Fischer A, Otto B, Kühl AA, et al.: Survey of extra-intestinal immune responses in asymptomatic long-term Campylobacter jejuni-infected mice. Eur J Microbiol Immunol (Bp) 3, 174–182 (2013)
Birkedal-Hansen H , Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, et al.: Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 4, 197–250 (1993)
Goetzl EJ , Banda MJ, Leppert D: Matrix metalloproteinases in immunity. J Immunol 156, 1–4 (1996)
Brinckerhoff CE , Matrisian LM: Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 3, 207–214 (2002)
Nelson AR , Fingleton B, Rothenberg ML, Matrisian LM: Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18, 1135–1149 (2000)
Crawford HC , Matrisian LM: Mechanisms controlling the transcription of matrix metalloproteinase genes in normal and neoplastic cells. Enzyme Protein 49, 20–37 (1996)
Saren P , Welgus HG, Kovanen PT: TNF-alpha and IL-1beta selectively induce expression of 92-kDa gelatinase by human macrophages. J Immunol 157, 4159–4165 (1996)
Salmela MT , MacDonald TT, Black D, Irvine B, Zhuma T, et al.: Upregulation of matrix metalloproteinases in a model of T cell mediated tissue injury in the gut: analysis by gene array and in situ hybridisation. Gut 51, 540–547 (2002)
Munoz M , Heimesaat MM, Danker K, Struck D, Lohmann U, et al.: Interleukin (IL)-23 mediates Toxoplasma gondiiinduced immunopathology in the gut via matrixmetalloproteinase- 2 and IL-22 but independent of IL-17. J Exp Med 206, 3047–3059 (2009)
Heimesaat MM , Dunay IR, Fuchs D, Trautmann D, Fischer A, et al.: The distinct roles of MMP-2 and MMP-9 in acute DSS colitis. Eur J Microbiol Immunol (Bp) 1, 302–310 (2011)
Bailey CJ , Hembry RM, Alexander A, Irving MH, Grant ME, et al.: Distribution of the matrix metalloproteinases stromelysin, gelatinases A and B, and collagenase in Crohn’s disease and normal intestine. J Clin Pathol 47, 113–116 (1994)
Baugh MD , Perry MJ, Hollander AP, Davies DR, Cross SS, et al.: Matrix metalloproteinase levels are elevated in inflammatory bowel disease. Gastroenterology 117, 814–822 (1999)
von Lampe B , Barthel B, Coupland SE, Riecken EO, Rosewicz S: Differential expression of matrix metalloproteinases and their tissue inhibitors in colon mucosa of patients with inflammatory bowel disease. Gut 47, 63–73 (2000)
Vanlaere I , Libert C: Matrix metalloproteinases as drug targets in infections caused by gram-negative bacteria and in septic shock. Clin Microbiol Rev 22, 224–239 (2009)
Handley SA , Miller VL: General and specific host responses to bacterial infection in Peyer’s patches: a role for stromelysin-1 (matrix metalloproteinase-3) during Salmonella enterica infection. Mol Microbiol 64, 94–110 (2007)
Kundu P , Mukhopadhyay AK, Patra R, Banerjee A, Berg DE, et al.: Cag pathogenicity island-independent up-regulation of matrix metalloproteinases-9 and -2 secretion and expression in mice by Helicobacter pylori infection. J Biol Chem 281, 34651–34662 (2006)
Bergin PJ , Raghavan S, Svensson H, Starckx S, Van Aelst I, et al.: Gastric gelatinase B/matrix metalloproteinase-9 is rapidly increased in Helicobacter felis-induced gastritis. FEMS Immunol Med Microbiol 52, 88–98 (2008)
Bodger K , Ahmed S, Pazmany L, Pritchard DM, Micheal A, et al.: Altered gastric corpus expression of tissue inhibitors of metalloproteinases in human and murine Helicobacter infection. J Clin Pathol 61, 72–78 (2008)
Takeda M , Imada K, Sato T, Ito A: Activation of human progelatinase A/promatrix metalloproteinase 2 by Escherichia coli-derived serine proteinase. Biochem Biophys Res Commun 268, 128–132 (2000)
Alutis ME , Grundmann U, Fischer A, Kühl AA, Bereswill S, et al.: Selective gelatinase inhibition reduces apoptosis and pro-inflammatory immune cell responses in Campylobacter jejuni-infected gnotobiotic IL-10 deficient mice. Eur J Microbiol Immunol (Bp) 4, 213–222 (2014)
Bereswill S , Fischer A, Plickert R, Haag LM, Otto B, et al.: Novel murine infection models provide deep insights into the “menage a trois” of Campylobacter jejuni, microbiota and host innate immunity. PLoS One 6, e20953 (2011)
Haag LM , Fischer A, Otto B, Plickert R, Kühl AA, et al.: Campylobacter jejuni induces acute enterocolitis in gnotobiotic IL-10-/- mice via Toll-like-receptor-2 and -4 signaling. PLoS One 7, e40761 (2012)
Heimesaat MM , Lugert R, Fischer A, Alutis M, Kühl AA, et al.: Impact of Campylobacter jejuni cj0268c knockout mutation on intestinal colonization, translocation, and induction of immunopathology in gnotobiotic IL-10 deficient mice. PLoS One 9, e90148 (2014)
Heimesaat MM , Alutis M, Grundmann U, Fischer A, Tegtmeyer N, et al.: The role of serine protease HtrA in acute ulcerative enterocolitis and extra-intestinal immune responses during Campylobacter jejuni infection of gnotobiotic IL-10 deficient mice. Front Cell Infect Microbiol 4, 77 (2014)
Paclik D , Berndt U, Guzy C, Dankof A, Danese S, et al.: Galectin-2 induces apoptosis of lamina propria T lymphocytes and ameliorates acute and chronic experimental colitis in mice. J Mol Med (Berl) 86, 1395–1406 (2008)
Heimesaat MM , Nogai A, Bereswill S, Plickert R, Fischer A, et al.: MyD88/TLR9 mediated immunopathology and gut microbiota dynamics in a novel murine model of intestinal graft-versus-host disease. Gut 59, 1079–1087 (2010)
Bereswill S , Munoz M, Fischer A, Plickert R, Haag LM, et al.: Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation. PLoS One 5, e15099 (2010)
Heimesaat MM , Fischer A, Alutis M, Grundmann U, Boehm M, et al.: The impact of serine protease HtrA in apoptosis, intestinal immune responses and extra-intestinal histopathology during Campylobacter jejuni infection of infant mice. Gut Pathog 6, 16 (2014)
Haag LM , Fischer A, Otto B, Plickert R, Kühl AA, et al.: Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice. PLoS One 7, e35988 (2012)
Eidenschenk C , Rutz S, Liesenfeld O, Ouyang W: Role of IL-22 in microbial host defense. Curr Top Microbiol Immunol 380, 213–236 (2014)
Ouyang WJ , Rutz S, Crellin NK, Valdez PA, Hymowitz SG: Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 29, 29, 71–109 (2011)
Edwards LA , Nistala K, Mills DC, Stephenson HN, Zilbauer M, et al.: Delineation of the innate and adaptive Tcell immune outcome in the human host in response to Campylobacter jejuni infection. PLoS One 5, e15398 (2010)
Malik A , Sharma D, St Charles J, Dybas LA, Mansfield LS: Contrasting immune responses mediate Campylobacter jejuni-induced colitis and autoimmunity. Mucosal Immunol 7, 802–817 (2014)