View More View Less
  • 1 Charité — University Medicine Berlin, Berlin, Germany
  • 2 Charité — University Medicine Berlin, Berlin, Germany
  • 3 Tel Aviv University, Tel Aviv, Israel
Open access

The octapeptide NAP has been shown to exert neuroprotective properties. Here, we investigated potential anti-inflammatory effects of NAP in an acute ileitis model. To address this, C57BL/6j mice were perorally infected with Toxoplasma gondii (day 0). Within 1 week postinfection (p.i.), placebo (PLC)-treated mice developed acute ileitis due to Th1-type immune responses. Mice that were subjected to intraperitoneal NAP treatment from day 1 until day 6 p.i., however, developed less distinct macroscopic and microscopic disease as indicated by less body weight loss, less distinct histopathological ileal changes, and lower ileal apoptotic, but higher proliferating cell numbers, less abundance of neutrophils, macrophages, monocytes, and T lymphocytes, but higher numbers of regulatory T cells in the ileal mucosa and lamina propria, and lower concentrations of pro-inflammatory mediators in the ilea as compared to PLC controls at day 7 p.i. Remarkably, NAP-mediated anti-inflammatory effects could also be observed in extra-intestinal compartments including liver and spleen. Strikingly, lower MCP-1, TNF, and IL-12p70 serum concentrations in NAP as compared to PLC-treated mice at day 7 p.i. indicate a pronounced systemic anti-inflammatory effect of NAP in acute ileitis. These findings provide first evidence for NAP as a potential novel treatment option in intestinal inflammation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1.

    Liesenfeld O , Kosek J, Remington JS, Suzuki Y: Association of CD4+ T cell-dependent, interferon-gamma-mediated necrosis of the small intestine with genetic susceptibility of mice to peroral infection with Toxoplasma gondii. J Exp Med 1184(2), 597607 (1996)

    • Search Google Scholar
    • Export Citation
  • 2.

    Munoz M , Liesenfeld O, Heimesaat MM: Immunology of Toxoplasma gondii. Immunol Rev 240(1), 269285 (2011)

  • 3.

    Khan IA , Schwartzman JD, Matsuura T, Kasper LH: A dichotomous role for nitric oxide during acute Toxoplasma gondii infection in mice. Proc Natl Acad Sci U S A 94(25), 1395513960 (1997)

    • Search Google Scholar
    • Export Citation
  • 4.

    Liesenfeld O , Kang H, Park D, Nguyen TA, Parkhe CV, Watanabe H, et al.: TNF-alpha, nitric oxide and IFNgamma are all critical for development of necrosis in the small intestine and early mortality in genetically susceptible mice infected perorally with Toxoplasma gondii. Parasite Immunol 21(7), 365376 (1999)

    • Search Google Scholar
    • Export Citation
  • 5.

    Mennechet FJ , Kasper LH, Rachinel N, Li W, Vandewalle A, Buzoni-Gatel D: Lamina propria CD4+ T lymphocytes synergize with murine intestinal epithelial cells to enhance proinflammatory response against an intracellular pathogen. J Immunol 168(6), 29882996 (2002)

    • Search Google Scholar
    • Export Citation
  • 6.

    Vossenkamper A , Struck D, Alvarado-Esquivel C, Went T, Takeda K, Akira S, et al.: Both IL-12 and IL-18 contribute to small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii, but IL-12 is dominant over IL-18 in parasite control. Eur J Immunol 34(11), 31973207 (2004)

    • Search Google Scholar
    • Export Citation
  • 7.

    Buzoni-Gatel D , Schulthess J, Menard LC, Kasper LH: Mucosal defences against orally acquired protozoan parasites, emphasis on Toxoplasma gondii infections. Cell Microbiol 8(4), 535544 (2006)

    • Search Google Scholar
    • Export Citation
  • 8.

    Liesenfeld O : Oral infection of C57BL/6 mice with Toxoplasma gondii: a new model of inflammatory bowel disease? J Infect Dis 185(Suppl 1), S96101 (2002)

    • Search Google Scholar
    • Export Citation
  • 9.

    Bassan M , Zamostiano R, Davidson A, Pinhasov A, Giladi E, Perl O, et al.: Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J Neurochem 72(3), 12831293 (1999)

    • Search Google Scholar
    • Export Citation
  • 10.

    Zamostiano R , Pinhasov A, Gelber E, Steingart RA, Seroussi E, Giladi E, et al.: Cloning and characterization of the human activity-dependent neuroprotective protein. J Biol Chem 276(1), 708714 (2001)

    • Search Google Scholar
    • Export Citation
  • 11.

    Gozes I , Divinski I: The femtomolar-acting NAP interacts with microtubules: novel aspects of astrocyte protection. J Alzheimers Dis 6(6 Suppl), S3741 (2004)

    • Search Google Scholar
    • Export Citation
  • 12.

    Quintana FJ , Zaltzman R, Fernandez-Montesinos R, Herrera JL, Gozes I, Cohen IR, et al.: NAP, a peptide derived from the activity-dependent neuroprotective protein, modulates macrophage function. Ann N Y Acad Sci 1070, 500506 (2006)

    • Search Google Scholar
    • Export Citation
  • 13.

    Zemlyak I , Furman S, Brenneman DE, Gozes I: A novel peptide prevents death in enriched neuronal cultures. Regul Pept 96(1–2), 3943 (2000)

    • Search Google Scholar
    • Export Citation
  • 14.

    Ashur-Fabian O , Segal-Ruder Y, Skutelsky E, Brenneman DE, Steingart RA, Giladi E, et al.: The neuroprotective peptide NAP inhibits the aggregation of the beta-amyloid peptide. Peptides 24(9), 14131423 (2003)

    • Search Google Scholar
    • Export Citation
  • 15.

    Beni-Adani L , Gozes I, Cohen Y, Assaf Y, Steingart RA, Brenneman DE, et al.: A peptide derived from activity-dependent neuroprotective protein (ADNP) ameliorates injury response in closed head injury in mice. J Pharmacol Exp Ther 296(1), 5763 (2001)

    • Search Google Scholar
    • Export Citation
  • 16.

    Rotstein M , Bassan H, Kariv N, Speiser Z, Harel S, Gozes I: NAP enhances neurodevelopment of newborn apolipoprotein E-deficient mice subjected to hypoxia. J Pharmacol Exp Ther 319(1), 332339 (2006)

    • Search Google Scholar
    • Export Citation
  • 17.

    Greggio S , de Paula S, de Oliveira IM, Trindade C, Rosa RM, Henriques JA, et al.: NAP prevents acute cerebral oxidative stress and protects against long-term brain injury and cognitive impairment in a model of neonatal hypoxiaischemia. Neurobiol Dis 44(1), 152159 (2011)

    • Search Google Scholar
    • Export Citation
  • 18.

    Braitch M , Kawabe K, Nyirenda M, Gilles LJ, Robins RA, Gran B, et al.: Expression of activity-dependent neuroprotective protein in the immune system: possible functions and relevance to multiple sclerosis. Neuroimmunomodulation 17(2), 120125 (2010)

    • Search Google Scholar
    • Export Citation
  • 19.

    Heimesaat MM , Bereswill S, Fischer A, Fuchs D, Struck D, Niebergall J, et al.: Gram-negative bacteria aggravate murine small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii. J Immunol 177(12), 87858795 (2006)

    • Search Google Scholar
    • Export Citation
  • 20.

    Heimesaat MM , Fischer A, Jahn HK, Niebergall J, Freudenberg M, Blaut M, et al.: Exacerbation of murine ileitis by Toll-like receptor 4 mediated sensing of lipopolysaccharide from commensal Escherichia coli. Gut 56(7), 941948 (2007)

    • Search Google Scholar
    • Export Citation
  • 21.

    Heimesaat MM , Plickert R, Fischer A, Göbel UB, Bereswill S: Can microbiota transplantation abrogate murine colonization resistance against Campylobacter jejuni? Eur J Microbiol Immunol (Bp) 3(1), 3643 (2013)

    • Search Google Scholar
    • Export Citation
  • 22.

    Bereswill S , Munoz M, Fischer A, Plickert R, Haag LM, Otto B, et al.: Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation. PLoS One 5(12), e15099 (2010)

    • Search Google Scholar
    • Export Citation
  • 23.

    Bereswill S , Fischer A, Plickert R, Haag LM, Otto B, Kühl AA, et al.: Novel murine infection models provide deep insights into the “menage a trois” of Campylobacter jejuni, microbiota and host innate immunity. PLoS One 6(6), e20953 (2011)

    • Search Google Scholar
    • Export Citation
  • 24.

    Haag LM , Fischer A, Otto B, Plickert R, Kühl AA, Göbel UB, et al.: Campylobacter jejuni induces acute enterocolitis in gnotobiotic IL-10-/- mice via Toll-like-receptor-2 and -4 signaling. PLoS One 7(7), e40761 (2012)

    • Search Google Scholar
    • Export Citation
  • 25.

    Haag LM , Fischer A, Otto B, Plickert R, Kühl AA, Göbel UB, et al.: Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice. PLoS One 7(5), e35988 (2012)

    • Search Google Scholar
    • Export Citation
  • 26.

    Heimesaat MM , Alutis M, Grundmann U, Fischer A, Tegtmeyer N, Böhm M, et al.: The role of serine protease HtrA in acute ulcerative enterocolitis and extra-intestinal immune responses during Campylobacter jejuni infection of gnotobiotic IL-10 deficient mice. Front Cell Infect Microbiol 4, 77 (2014)

    • Search Google Scholar
    • Export Citation
  • 27.

    Munoz M , Heimesaat MM, Danker K, Struck D, Lohmann U, Plickert R, et al.: Interleukin (IL)-23 mediates Toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17. J Exp Med 206(13), 30473059 (2009)

    • Search Google Scholar
    • Export Citation
  • 28.

    Scholzen T , Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol 182(3), 311322 (2000)

  • 29.

    Bereswill S , Kühl AA, Alutis M, Fischer A, Möhle L, Struck D, et al.: The impact of Toll-like-receptor-9 on intestinal microbiota composition and extra-intestinal sequelae in experimental Toxoplasma gondii induced ileitis. Gut Pathog 6, 19 (2014)

    • Search Google Scholar
    • Export Citation
  • 30.

    Sartor RB : Microbial influences in inflammatory bowel diseases. Gastroenterol 134(2), 577594 (2008)

  • 31.

    Sartor RB : Genetics and environmental interactions shape the intestinal microbiome to promote inflammatory bowel disease versus mucosal homeostasis. Gastroenterol 139(6), 18161819 (2010)

    • Search Google Scholar
    • Export Citation
  • 32.

    Thoene-Reineke C , Fischer A, Friese C, Briesemeister D, Göbel UB, Kammertoens T, et al.: Composition of intestinal microbiota in immune-deficient mice kept in three different housing conditions. PLoS One 9(11), e113406 (2014)

    • Search Google Scholar
    • Export Citation
  • 33.

    Heimesaat MM , Fischer A, Alutis M, Grundmann U, Boehm M, Tegtmeyer N, et al.: The impact of serine protease HtrA in apoptosis, intestinal immune responses and extra-intestinal histopathology during Campylobacter jejuni infection of infant mice. Gut Pathog 6, 16 (2014)

    • Search Google Scholar
    • Export Citation
  • 34.

    Heimesaat MM , Dunay IR, Alutis M, Fischer A, Möhle L, Göbel UB, et al.: Nucleotide-oligomerization-domain-2 affects commensal gut microbiota composition and intracerebral immunopathology in acute Toxoplasma gondiiinduced murine ileitis. PLoS One 9(8), e105120 (2014)

    • Search Google Scholar
    • Export Citation
  • 35.

    Leker RR , Teichner A, Grigoriadis N, Ovadia H, Brenneman DE, Fridkin M, et al.: NAP, a femtomolar-acting peptide, protects the brain against ischemic injury by reducing apoptotic death. Stroke 33(4), 10851092 (2002)

    • Search Google Scholar
    • Export Citation
  • 36.

    Idan-Feldman A , Ostritsky R, Gozes I: Tau and caspase 3 as targets for neuroprotection. Int J Alzheimers Dis 2012, 493670 (2012)

  • 37.

    Furman S , Steingart RA, Mandel S, Hauser JM, Brenneman DE, Gozes I: Subcellular localization and secretion of activity-dependent neuroprotective protein in astrocytes. Neuron Glia Biol 1(3), 193199 (2004)

    • Search Google Scholar
    • Export Citation
  • 38.

    Heimesaat MM , Dunay IR, Schulze S, Fischer A, Grundmann U, Alutis M, et al.: Pituitary adenylate cyclase-activating polypeptide ameliorates experimental acute ileitis and extra-intestinal sequelae. PLoS One 9(9), e108389 (2014)

    • Search Google Scholar
    • Export Citation
  • 39.

    Boxer AL , Lang AE, Grossman M, Knopman DS, Miller BL, Schneider LS, et al.: Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol 13(7), 676685 (2014)

    • Search Google Scholar
    • Export Citation