View More View Less
  • 1 Charité Universitätsmedizin Berlin, Berlin, Germany
  • 2 Universidade Federal de São Paulo, Brasilia, Brazil
Open access

Ocular toxoplasmosis is a vision-threatening disease and the major cause of posterior uveitis worldwide. In spite of the continuing global burden of ocular toxoplasmosis, many critical aspects of disease including the therapeutic approach to ocular toxoplasmosis are still under debate. To assist in addressing many aspects of the disease, numerous experimental models of ocular toxoplasmosis have been established. In this article, we present an overview on in vitro, ex vivo, and in vivo models of ocular toxoplasmosis available to date.

Experimental studies on ocular toxoplasmosis have recently focused on mice. However, the majority of murine models established so far are based on intraperitoneal and intraocular infection with Toxoplasma gondii. We therefore also present results obtained in an in vivo model using peroral infection of C57BL/6 and NMRI mice that reflects the natural route of infection and mimics the disease course in humans. While advances have been made in ex vivo model systems or larger animals to investigate specific aspects of ocular toxoplasmosis, laboratory mice continue to be the experimental model of choice for the investigation of ocular toxoplasmosis.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1.

    Maenz M , Schluter D, Liesenfeld O, Schares G, Gross U, et al.: Ocular toxoplasmosis past, present and new aspects of an old disease. Prog Retin Eye Res 39, 77106 (2014)

    • Search Google Scholar
    • Export Citation
  • 2.

    Holland GN : Ocular toxoplasmosis: a global reassessment. Part I: epidemiology and course of disease. Am J Ophthalmol 136, 973988 (2003)

    • Search Google Scholar
    • Export Citation
  • 3.

    Montoya JG , Liesenfeld O: Toxoplasmosis. Lancet 363, 19651976 (2004)

  • 4.

    Holland GN : Ocular toxoplasmosis in the immunocompromised host. Int Ophthalmol 13, 399402 (1989)

  • 5.

    Glasner PD , Silveira C, Kruszon-Moran D, Martins MC, Burnier Junior M, et al.: An unusually high prevalence of ocular toxoplasmosis in southern Brazil. Am J Ophthalmol 114, 136144 (1992)

    • Search Google Scholar
    • Export Citation
  • 6.

    Gilbert RE , Stanford MR: Is ocular toxoplasmosis caused by prenatal or postnatal infection? Br J Ophthalmol 84, 224226 (2000)

  • 7.

    López-Castillo C . A. D-l- TA: Definición de la adquisición de la infección toxoplásmica, ¿cuándo es congénita o adquirida? Arch Soc Esp Oftalmol 86, 222226 (2011)

    • Search Google Scholar
    • Export Citation
  • 8.

    Robert-Gangneux F , Darde ML: Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 25, 264296 (2012)

  • 9.

    Shobab L , Pleyer U, Johnsen J, Metzner S, James ER, et al.: Toxoplasma serotype is associated with development of ocular toxoplasmosis. J Infect Dis 208, 15201528 (2013)

    • Search Google Scholar
    • Export Citation
  • 10.

    Fekkar A , Ajzenberg D, Bodaghi B, Touafek F, Le Hoang P, et al.: Direct genotyping of Toxoplasma gondii in ocular fluid samples from 20 patients with ocular toxoplasmosis: predominance of type II in France. J Clin Microbiol 49, 15131517 (2011)

    • Search Google Scholar
    • Export Citation
  • 11.

    Khan A , Jordan C, Muccioli C, Vallochi AL, Rizzo LV, et al.: Genetic divergence of Toxoplasma gondii strains associated with ocular toxoplasmosis, Brazil. Emerg Infect Dis 12, 942949 (2006)

    • Search Google Scholar
    • Export Citation
  • 12.

    Grigg ME , Ganatra J, Boothroyd JC, Margolis TP: Unusual abundance of atypical strains associated with human ocular toxoplasmosis. J Infect Dis 184, 633639 (2001)

    • Search Google Scholar
    • Export Citation
  • 13.

    Boothroyd JC , Grigg ME: Population biology of Toxoplasma gondii and its relevance to human infection: do different strains cause different disease? Curr Opin Microbiol 5, 438442 (2002)

    • Search Google Scholar
    • Export Citation
  • 14.

    Bosch-Driessen LE , Berendschot TT, Ongkosuwito JV, Rothova A: Ocular toxoplasmosis: clinical features and prognosis of 154 patients. Ophthalmology 109, 869878 (2002)

    • Search Google Scholar
    • Export Citation
  • 15.

    Holland GN : Ocular toxoplasmosis: a global reassessment. Part II: disease manifestations and management. Am J Ophthalmol 137, 117 (2004)

    • Search Google Scholar
    • Export Citation
  • 16.

    Pleyer U , Torun N, Liesenfeld O: [Ocular toxoplasmosis]. Ophthalmologe 104, 603615, quiz 616 (2007)

  • 17.

    Mets MB , Holfels E, Boyer KM, Swisher CN, Roizen N, et al.: Eye manifestations of congenital toxoplasmosis. Am J Ophthalmol 122, 309324 (1996)

    • Search Google Scholar
    • Export Citation
  • 18.

    Bosch-Driessen EH , Rothova: A recurrent ocular disease in postnatally acquired toxoplasmosis. Am J Ophthalmol 128, 421425 (1999)

  • 19.

    Garweg JG , Scherrer J, Wallon M, Kodjikian L, Peyron F: Reactivation of ocular toxoplasmosis during pregnancy. BJOG 112, 241242 (2005)

  • 20.

    Holland GN , Crespi CM, ten Dam-van Loon N, Charonis AC, Yu F, et al.: Analysis of recurrence patterns associated with toxoplasmic retinochoroiditis. Am J Ophthalmol 145, 10071013 (2008)

    • Search Google Scholar
    • Export Citation
  • 21.

    Bosch-Driessen LH , Plaisier MB, Stilma JS, Van der Lelij A, Rothova A: Reactivations of ocular toxoplasmosis after cataract extraction. Ophthalmology 109, 4145 (2002)

    • Search Google Scholar
    • Export Citation
  • 22.

    Garweg JG , de Groot-Mijnes JD, Montoya JG: Diagnostic approach to ocular toxoplasmosis. Ocul Immunol Inflamm 19, 255261 (2011)

  • 23.

    Montoya JG , Parmley S, Liesenfeld O, Jaffe GJ, Remington JS: Use of the polymerase chain reaction for diagnosis of ocular toxoplasmosis. Ophthalmology 106, 15541563 (1999)

    • Search Google Scholar
    • Export Citation
  • 24.

    Holland GN , Lewis KG: An update on current practices in the management of ocular toxoplasmosis. Am J Ophthalmol 134, 102114 (2002)

  • 25.

    Torun N , Sherif Z, Garweg J, Pleyer U: [Diagnosis and treatment of ocular toxoplasmosis: a survey of Germanspeaking ophthalmologists]. Ophthalmologe 105, 10231028 (2008)

    • Search Google Scholar
    • Export Citation
  • 26.

    Bosch-Driessen EH , Rothova A: Sense and nonsense of corticosteroid administration in the treatment of ocular toxoplasmosis. Br J Ophthalmol 82, 858860 (1998)

    • Search Google Scholar
    • Export Citation
  • 27.

    Silveira C , Belfort R, Muccioli C, Holland GN, Victora CG, et al.: The effect of long-term intermittent trimethoprim/sulfamethoxazole treatment on recurrences of toxoplasmic retinochoroiditis. Am J Ophthalmol 134, 4146 (2002)

    • Search Google Scholar
    • Export Citation
  • 28.

    Commodaro AG , Belfort RN, Rizzo LV, Muccioli C, Silveira C, et al.: Ocular toxoplasmosis: an update and review of the literature. Mem Inst Oswaldo Cruz 104, 345350 (2009)

    • Search Google Scholar
    • Export Citation
  • 29.

    Pfaff AW , de-la-Torre A, Rochet E, Brunet J, Sabou M, et al.: New clinical and experimental insights into Old World and neotropical ocular toxoplasmosis. Int J Parasitol 44, 99107 (2014)

    • Search Google Scholar
    • Export Citation
  • 30.

    Holland GN : Ocular toxoplasmosis: the influence of patient age. Mem Inst Oswaldo Cruz 104, 351357 (2009)

  • 31.

    Braakenburg AM , Rothova A: Clinical features of ocular toxoplasmosis during pregnancy. Retina 29, 627630 (2009)

  • 32.

    Roberts F , McLeod R: Pathogenesis of toxoplasmic retinochoroiditis. Parasitol Today 15, 5157 (1999)

  • 33.

    Stanford MR , Gilbert RE: Treating ocular toxoplasmosis: current evidence. Mem Inst Oswaldo Cruz 104, 312315 (2009)

  • 34.

    Jones LA , Alexander J, Roberts CW: Ocular toxoplasmosis: in the storm of the eye. Parasite Immunol 28, 635642 (2006)

  • 35.

    Mimura KK , Tedesco RC, Calabrese KS, Gil CD, Oliani SM: The involvement of anti-inflammatory protein, annexin A1, in ocular toxoplasmosis. Mol Vis 18, 15831593 (2012)

    • Search Google Scholar
    • Export Citation
  • 36.

    Nagineni CN , Detrick B, Hooks JJ: Toxoplasma gondii infection induces gene expression and secretion of interleukin 1 (IL-1), IL-6, granulocyte-macrophage colony-stimulating factor, and intercellular adhesion molecule 1 by human retinal pigment epithelial cells. Infect Immun 68, 407410 (2000)

    • Search Google Scholar
    • Export Citation
  • 37.

    Nagineni CN , Detrick B, Hooks JJ: Transforming growth factor-beta expression in human retinal pigment epithelial cells is enhanced by Toxoplasma gondii: a possible role in the immunopathogenesis of retinochoroiditis. Clin Exp Immunol 128, 372378 (2002)

    • Search Google Scholar
    • Export Citation
  • 38.

    Nagineni CN , Pardhasaradhi K, Martins MC, Detrick B, Hooks JJ: Mechanisms of interferon-induced inhibition of Toxoplasma gondii replication in human retinal pigment epithelial cells. Infect Immun 64, 41884196 (1996)

    • Search Google Scholar
    • Export Citation
  • 39.

    Furtado JM , Bharadwaj AS, Ashander LM, Olivas A, Smith JR: Migration of Toxoplasma gondii-infected dendritic cells across human retinal vascular endothelium. Invest Ophthalmol Vis Sci 53, 68566862 (2012)

    • Search Google Scholar
    • Export Citation
  • 40.

    Furtado JM , Bharadwaj AS, Chipps TJ, Pan Y, Ashander LM, et al.: Toxoplasma gondii tachyzoites cross retinal endothelium assisted by intercellular adhesion molecule-1 in vitro. Immunol Cell Biol 90,912915 (2012)

  • 41.

    Tedesco RC , Smith RL, Corte-Real S, Calabrese KS: Ocular toxoplasmosis: the role of retinal pigment epithelium migration in infection. Parasitol Res 92, 467472 (2004)

    • Search Google Scholar
    • Export Citation
  • 42.

    Moraes AM , Pessoa CN, Vommaro RC, De Souza W, de Mello FG, et al.: Cultured embryonic retina systems as a model for the study of underlying mechanisms of Toxoplasma gondii infection. Invest Ophthalmol Vis Sci 45, 28132821 (2004)

    • Search Google Scholar
    • Export Citation
  • 43.

    Furtado JM , Ashander LM, Mohs K, Chipps TJ, Appukuttan B, et al.: Toxoplasma gondii migration within and infection of human retina. PLoS One 8, e54358 (2013)

    • Search Google Scholar
    • Export Citation
  • 44.

    Hogan MJ (1951): Ocular Toxoplasmosis. Columbia University Press, New York

  • 45.

    Frenkel JK : Ocular lesions in hamsters; with chronic Toxoplasma and Besnoitia infection. Am J Ophthalmol 39, 203225 (1955)

  • 46.

    Davidson MG , Lappin MR, English RV, Tompkins MB: A feline model of ocular toxoplasmosis. Invest Ophthalmol Vis Sci 34, 36533660 (1993)

  • 47.

    Tedesco RC , Smith RL, Corte-Real S, Calabrese KS: Ocular toxoplasmosis in mice: comparison of two routes of infection. Parasitology 131, 303307 (2005)

    • Search Google Scholar
    • Export Citation
  • 48.

    Pavesio CE , Chiappino ML, Gormley P, Setzer PY, Nichols BA: Acquired retinochoroiditis in hamsters inoculated with ME 49 strain Toxoplasma. Invest Ophthalmol Vis Sci 36, 21662175 (1995)

    • Search Google Scholar
    • Export Citation
  • 49.

    Gazzinelli RT , Brezin A, Li Q, Nussenblatt RB, Chan CC: Toxoplasma gondii: acquired ocular toxoplasmosis in the murine model, protective role of TNF-alpha and IFNgamma. Exp Parasitol 78, 217229 (1994)

    • Search Google Scholar
    • Export Citation
  • 50.

    Lyons RE , Anthony JP, Ferguson DJ, Byrne N, Alexander J, et al.: Immunological studies of chronic ocular toxoplasmosis: up-regulation of major histocompatibility complex class I and transforming growth factor beta and a protective role for interleukin-6. Infect Immun 69, 25892595 (2001)

    • Search Google Scholar
    • Export Citation
  • 51.

    Shen DF , Matteson DM, Tuaillon N, Suedekum BK, Buggage RR, et al.: Involvement of apoptosis and interferongamma in murine toxoplasmosis. Invest Ophthalmol Vis Sci 42, 20312036 (2001)

    • Search Google Scholar
    • Export Citation
  • 52.

    Gormley PD , Pavesio CE, Luthert P, Lightman S: Retinochoroiditis is induced by oral administration of Toxoplasma gondii cysts in the hamster model. Exp Eye Res 68, 657661 (1999)

    • Search Google Scholar
    • Export Citation
  • 53.

    Norose K , Aosai F, Mizota A, Yamamoto S, Mun HS, et al.: Deterioration of visual function as examined by electroretinograms in Toxoplasma gondii-infected IFN-gammaknockout mice. Invest Ophthalmol Vis Sci 46, 317321 (2005)

    • Search Google Scholar
    • Export Citation
  • 54.

    Subauste C : Animal models for Toxoplasma gondii infection. Curr Protoc Immunol Chapter 19, Unit 19 131123 (2012)

  • 55.

    Webb RM , Tabbara KF, O’Connor GR: Retinal vasculitis in ocular toxoplasmosis in nonhuman primates. Retina 4, 182188 (1984)

  • 56.

    Weiss LM , Kim K (2007): Toxoplasma gondii: The Model Apicomplexan. Perspectives and Methods: Academic Press, London, UK

  • 57.

    Davidson MG , Lappin MR, Rottman JR, Tompkins MB, English RV, et al.: Paradoxical effect of clindamycin in experimental, acute toxoplasmosis in cats. Antimicrob Agents Chemother 40, 13521359 (1996)

    • Search Google Scholar
    • Export Citation
  • 58.

    Garweg JG , Kuenzli H, Boehnke M: Experimental ocular toxoplasmosis in naive and primed rabbits. Ophthalmologica 212, 136141 (1998)

  • 59.

    Gormley PD , Pavesio CE, Minnasian D, Lightman S: Effects of drug therapy on Toxoplasma cysts in an animal model of acute and chronic disease. Invest Ophthalmol Vis Sci 39, 11711175 (1998)

    • Search Google Scholar
    • Export Citation
  • 60.

    Hogan MJ , Lewis A, Zweigart PA: Persistence of Toxoplasma gondii in ocular tissues. I. Am J Ophthalmol 42, 8489 (1956)

  • 61.

    Jacobs L , Melton ML, Kaufman HE: Treatment of experimental ocular toxoplasmosis. Arch Ophthalmol 71, 111118 (1964)

  • 62.

    Calabrese KS , Tedesco RC, Zaverucha do Valle T, Barbosa HS: Serum and aqueous humour cytokine response and histopathological alterations during ocular Toxoplasma gondii infection in C57BL/6 mice. Micron 39, 13351341 (2008)

    • Search Google Scholar
    • Export Citation
  • 63.

    Beverley JK : Congenital transmission of toxoplasmosis through successive generations of mice. Nature 183, 13481349 (1959)

  • 64.

    Remington JS : Experiments on the transmission of toxoplasmosis. Surv Ophthalmol 6, 856876 (1961)

  • 65.

    de Roever-Bonnet H : Congenital toxoplasma infections in mice and hamsters infected with avirulent and virulant strains. Trop Geogr Med 21, 443450 (1969)

    • Search Google Scholar
    • Export Citation
  • 66.

    Hay J , Hutchison WM, Lee WR, Siim JC: Cataract in mice congenitally infected with Toxoplasma gondii. Ann Trop Med Parasitol 75, 455457 (1981)

    • Search Google Scholar
    • Export Citation
  • 67.

    Lee WR , Hay J, Hutchison WM, Dutton GN, Siim JC: A murine model of congenital toxoplasmic retinochoroiditis. Acta Ophthalmol (Copenh) 61, 818830 (1983)

    • Search Google Scholar
    • Export Citation
  • 68.

    Dutton GN , McMenamin PG, Hay J, Cameron S: The ultrastructural pathology of congenital murine toxoplasmic retinochoroiditis. Part II : The morphology of the inflammatory changes. Exp Eye Res 43, 545560 (1986)

    • Search Google Scholar
    • Export Citation
  • 69.

    McMenamin PG , Dutton GN, Hay J, Cameron S: The ultrastructural pathology of congenital murine toxoplasmic retinochoroiditis. Part I : The localization and morphology of Toxoplasma cysts in the retina. Exp Eye Res 43, 529543 (1986)

    • Search Google Scholar
    • Export Citation
  • 70.

    Sauer A , Lahmar I, Scholler M, Villard O, Speeg-Schatz C, et al.: [Development of murine models of ocular toxoplasmosis and preliminary results of ocular inflammatory transcriptome]. J Fr Ophtalmol 32, 742749 (2009)

    • Search Google Scholar
    • Export Citation
  • 71.

    Lahmar I , Guinard M, Sauer A, Marcellin L, Abdelrahman T, et al.: Murine neonatal infection provides an efficient model for congenital ocular toxoplasmosis. Exp Parasitol 124, 190196 (2010)

    • Search Google Scholar
    • Export Citation
  • 72.

    Sauer A , Rochet E, Lahmar I, Brunet J, Sabou M, et al.: The local immune response to intraocular Toxoplasma re-challenge: less pathology and better parasite control through Treg/Th1/Th2 induction. Int J Parasitol 43, 721728 (2013)

    • Search Google Scholar
    • Export Citation
  • 73.

    Lahmar I , Pfaff AW, Marcellin L, Sauer A, Moussa A, et al.: Muller cell activation and photoreceptor depletion in a mice model of congenital ocular toxoplasmosis. Exp Parasitol 144, 2226 (2014)

    • Search Google Scholar
    • Export Citation
  • 74.

    Lopes CD , Silva NM, Ferro EA, Sousa RA, Firminot ML, et al.: Azithromycin reduces ocular infection during congenital transmission of toxoplasmosis in the Calomys callosus model. J Parasitol 95, 10051010 (2009)

    • Search Google Scholar
    • Export Citation
  • 75.

    Schoondermark-Van de Ven E , Melchers W, Galama J, Camps W, Eskes T, et al.: Congenital toxoplasmosis: an experimental study in rhesus monkeys for transmission and prenatal diagnosis. Exp Parasitol 77, 200211 (1993)

    • Search Google Scholar
    • Export Citation
  • 76.

    Tedesco RC , Vitor RW, Brandao GP, Calabrese KS: Ocular toxoplasmosis signs in mice embryo. Micron 38, 729733 (2007)

  • 77.

    Norose K , Mun HS, Aosai F, Chen M, Piao LX, et al.: IFNgamma-regulated Toxoplasma gondii distribution and load in the murine eye. Invest Ophthalmol Vis Sci 44, 43754381 (2003)

    • Search Google Scholar
    • Export Citation
  • 78.

    Liesenfeld O , Kosek J, Remington JS, Suzuki Y: Association of CD4+ T cell-dependent, interferon-gamma-mediated necrosis of the small intestine with genetic susceptibility of mice to peroral infection with Toxoplasma gondii. J Exp Med 184, 597607 (1996)

    • Search Google Scholar
    • Export Citation
  • 79.

    Lu F , Huang S, Hu MS, Kasper LH: Experimental ocular toxoplasmosis in genetically susceptible and resistant mice. Infect Immun 73, 51605165 (2005)

    • Search Google Scholar
    • Export Citation
  • 80.

    Rochet E , Brunet J, Sabou M, Marcellin L, Bourcier T, et al.: Interleukin-6-driven inflammatory response induces retinal pathology in a model of ocular toxoplasmosis reactivation. Infect Immun 83, 21092117 (2015)

    • Search Google Scholar
    • Export Citation
  • 81.

    Dukaczewska AK (2012): Establishment of a Murine Model of Ocular Toxoplasmosis [Doctoral dissertation]. Charité University Medicine Berlin

    • Search Google Scholar
    • Export Citation
  • 82.

    Hu MS , Schwartzman JD, Lepage AC, Khan IA, Kasper LH: Experimental ocular toxoplasmosis induced in naive and preinfected mice by intracameral inoculation. Ocul Immunol Inflamm 7, 1726 (1999)

    • Search Google Scholar
    • Export Citation
  • 83.

    Munoz M , Liesenfeld O, Heimesaat MM: Immunology of Toxoplasma gondii. Immunol Rev 240, 269285 (2011)

  • 84.

    Conley FK , Jenkins KA, Remington JS: Toxoplasma gondii infection of the central nervous system. Use of the peroxidase–antiperoxidase method to demonstrate toxoplasma in formalin fixed, paraffin embedded tissue sections. Hum Pathol 12, 690698 (1981)

    • Search Google Scholar
    • Export Citation
  • 85.

    Lu F , Huang S, Kasper LH: CD4+ T cells in the pathogenesis of murine ocular toxoplasmosis. Infect Immun 72, 49664972 (2004)

  • 86.

    Lu F , Huang S, Kasper LH: The temperature-sensitive mutants of Toxoplasma gondii and ocular toxoplasmosis. Vaccine 27, 573580 (2009)

  • 87.

    Olle P , Bessieres MH, Malecaze F, Seguela JP: The evolution of ocular toxoplasmosis in anti-interferon gamma treated mice. Curr Eye Res 15, 701707 (1996)

    • Search Google Scholar
    • Export Citation
  • 88.

    Sauer A , Pfaff AW, Villard O, Creuzot-Garcher C, Dalle F, et al.: Interleukin 17A as an effective target for anti-inflammatory and antiparasitic treatment of toxoplasmic uveitis. J Infect Dis 206, 13191329 (2012)

    • Search Google Scholar
    • Export Citation
  • 89.

    Kikumura A , Ishikawa T, Norose K: Kinetic analysis of cytokines, chemokines, chemokine receptors and adhesion molecules in murine ocular toxoplasmosis. Br J Ophthalmol 96, 12591267 (2012)

    • Search Google Scholar
    • Export Citation
  • 90.

    Roberts F , Roberts CW, Ferguson DJ, McLeod R: Inhibition of nitric oxide production exacerbates chronic ocular toxoplasmosis. Parasite Immunol 22, 15 (2000)

    • Search Google Scholar
    • Export Citation
  • 91.

    Lu F , Huang S, Kasper LH: Interleukin-10 and pathogenesis of murine ocular toxoplasmosis. Infect Immun 71, 71597163 (2003)

  • 92.

    Khan IA , Schwartzman JD, Matsuura T, Kasper LH: A dichotomous role for nitric oxide during acute Toxoplasma gondii infection in mice. Proc Natl Acad Sci U S A 94, 1395513960 (1997)

    • Search Google Scholar
    • Export Citation
  • 93.

    Yarovinsky F : Innate immunity to Toxoplasma gondii infection. Nat Rev Immunol 14, 109121 (2014)

  • 94.

    Liesenfeld O , Kang H, Park D, Nguyen TA, Parkhe CV, et al.: TNF-alpha, nitric oxide and IFN-gamma are all critical for development of necrosis in the small intestine and early mortality in genetically susceptible mice infected perorally with Toxoplasma gondii. Parasite Immunol 21, 365376 (1999)

    • Search Google Scholar
    • Export Citation
  • 95.

    Norose K , Kikumura A, Luster AD, Hunter CA, Harris TH: CXCL10 is required to maintain T-cell populations and to control parasite replication during chronic ocular toxoplasmosis. Invest Ophthalmol Vis Sci 52, 389398 (2010)

    • Search Google Scholar
    • Export Citation
  • 96.

    Eidenschenk C , Rutz S, Liesenfeld O, Ouyang W: Role of IL-22 in microbial host defense. Curr Top Microbiol Immunol 380, 213236 (2014)

  • 97.

    Rothermel A , Biedermann T, Weigel W, Kurz R, Ruffer M, et al.: Artificial design of three-dimensional retina-like tissue from dissociated cells of the mammalian retina by rotation-mediated cell aggregation. Tissue Eng 11, 17491756 (2005)

    • Search Google Scholar
    • Export Citation
  • 98.

    Belfort-Neto R , Nussenblatt V, Rizzo L, Muccioli C, Silveira C, et al.: High prevalence of unusual genotypes of Toxoplasma gondii infection in pork meat samples from Erechim, Southern Brazil. An Acad Bras Cienc 79, 111114 (2007)

    • Search Google Scholar
    • Export Citation
  • 99.

    Holland GN : Prospective, randomized trial of trimethoprim/sulfamethoxazole vs. pyrimethamine and sulfadiazine in the treatment of ocular toxoplasmosis: discussion. Ophthalmology 112, 18821884 (2005)

    • Search Google Scholar
    • Export Citation
  • 100. Bosch-Driessen LH, Verbraak FD, Suttorp-Schulten MS, van Ruyven RL, Klok AM, et al.: A prospective, randomized trial of pyrimethamine and azithromycin vs pyrimethamine and sulfadiazine for the treatment of ocular toxoplasmosis. Am J Ophthalmol 134, 3440 (2002)

    • Search Google Scholar
    • Export Citation
  • 101. Culbertson WW, Tabbara KF, O’Connor R: Experimental ocular toxoplasmosis in primates. Arch Ophthalmol 100, 321323 (1982)

  • 102. Nozik RA, O’Connor GR: Studies on experimental ocular toxoplasmosis in the rabbit. I. The effect of antigenic stimulation. Arch Ophthalmol 83, 724728 (1970)

    • Search Google Scholar
    • Export Citation
  • 103. Nozik RA, O’Connor GR: Studies on experimental ocular toxoplasmosis in the rabbit. II. Attempts to stimulate recurrences by local trauma, epinephrine, and corticosteroids. Arch Ophthalmol 84, 788791 (1970)

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 7 5
Jul 2020 0 5 6
Aug 2020 0 8 6
Sep 2020 0 3 1
Oct 2020 0 1 1
Nov 2020 0 3 0
Dec 2020 0 0 0