View More View Less
  • 1 Universitätsmedizin Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
Open access

Campylobacter jejuni’s flagellar locomotion is controlled by eleven chemoreceptors. Assessment of the distribution of the relevant chemoreceptor genes in the C. jejuni genomes deposited in the National Center for Biotechnology Information (NCBI) database led to the identification of two previously unknown tlp genes and a tlp5 pseudogene. These two chemoreceptor genes share the same locus in the C. jejuni genome with tlp4 and tlp11, but the gene region encoding the periplasmic ligand binding domain differs significantly from other chemoreceptor genes. Hence, they were named tlp12 and tlp13.

Consequently, it was of interest to study their distribution in C. jejuni subpopulations of different clonality, and their cooccurrence with the eleven previously reported chemoreceptor genes. Therefore, the presence of all tlp genes was detected by polymerase chain reaction (PCR) in 292 multilocus sequence typing (MLST)-typed C. jejuni isolates from different hosts.

The findings show interesting trends: Tlp4, tlp11, tlp12, and tlp13 appeared to be mutually exclusive and cooccur in a minor subset of isolates. Tlp4 was found to be present in only 33.56% of all tested isolates and was significantly less often detected in turkey isolates. Tlp11 was tested positive in only 17.8% of the isolates, while tlp12 was detected in 29.5% of all isolates, and tlp13 was found to be present in 38.7%.

  • 1.

    Dasti JI , Tareen AM, Lugert R, Zautner AE, Gross U: Campylobacter jejuni: a brief overview on pathogenicityassociated factors and disease-mediating mechanisms. Int, J Med Microbiol 300, 205211 (2010)

    • Search Google Scholar
    • Export Citation
  • 2.

    Zautner AE , Herrmann S, Groß U: Campylobacter jejuni – the search for virulence-associated factors. Arch Leb 61, 91101 (2010)

  • 3.

    Allos BM : Association between Campylobacter infection and Guillain–Barre syndrome. J Infect Dis 176(Suppl 2), S125128 (1997)

  • 4.

    Zautner AE , Johann C, Strubel A, Busse C, Tareen AM, Masanta WO, Lugert R, Schmitt-Ott R, Groß U: Seroprevalence of campylobacteriosis and relevant post-infectious sequelae. Eur, J Clin Microbiol Infect Dis 33, 10191027 (2014)

    • Search Google Scholar
    • Export Citation
  • 5.

    Hermans D , Pasmans F, Messens W, Martel A, Van Immerseel F, Rasschaert G, Heyndrickx M, Van Deun K, Haesebrouck F: Poultry as a host for the zoonotic pathogen Campylobacter jejuni. Vector Borne Zoonotic Dis 12, 8998 (2012)

    • Search Google Scholar
    • Export Citation
  • 6.

    Masanta WO , Heimesaat MM, Bereswill S, Tareen AM, Lugert R, Gross U, Zautner AE: Modification of intestinal microbiota and its consequences for innate immune response in the pathogenesis of campylobacteriosis. Clin Dev Immunol 2013, 526860 (2013)

    • Search Google Scholar
    • Export Citation
  • 7.

    Wagley S , Newcombe J, Laing E, Yusuf E, Sambles CM, Studholme DJ, La Ragione RM, Titball RW, Champion OL: Differences in carbon source utilisation distinguish Campylobacter jejuni from Campylobacter coli. BMC Microbiol 14, 262 (2014)

    • Search Google Scholar
    • Export Citation
  • 8.

    Marchant J , Wren B, Ketley J: Exploiting genome sequence: predictions for mechanisms of Campylobacter chemotaxis. Trends Microbiol 10, 155159 (2002)

    • Search Google Scholar
    • Export Citation
  • 9.

    Zautner AE , Tareen AM, Groß U, Lugert R: Chemotaxis in Campylobacter jejuni. Eur, J Microbiol Immunol 2, 2431 (2012)

  • 10.

    Day CJ , Hartley-Tassell LE, Shewell LK, King RM, Tram G, Day SK, Semchenko EA, Korolik V: Variation of chemo sensory receptor content of Campylobacter jejuni strains and modulation of receptor gene expression under different in vivo and in vitro growth conditions. BMC Microbiol 12, 128 (2012)

    • Search Google Scholar
    • Export Citation
  • 11.

    Tareen AM , Dasti JI, Zautner AE, Groß U, Lugert R: Campylobacter jejuni proteins Cj0952c and Cj0951c affect chemotactic behaviour towards formic acid and are important for invasion of host cells. Microbiology 156, 31233135 (2010)

    • Search Google Scholar
    • Export Citation
  • 12.

    Vegge CS , Brondsted L, Li YP, Bang DD, Ingmer H: Energy taxis drives Campylobacter jejuni toward the most favorable conditions for growth. Appl Env Microbiol 75, 53085314 (2009)

    • Search Google Scholar
    • Export Citation
  • 13.

    Hartley-Tassell LE , Shewell LK, Day CJ, Wilson JC, Sandhu R, Ketley JM, Korolik V: Identification and characterization of the aspartate chemosensory receptor of Campylobacter jejuni. Mol Microbiol 75, 710730 (2010)

    • Search Google Scholar
    • Export Citation
  • 14.

    Zautner AE , Herrmann S, Corso J, Tareen AM, Alter T, Groß U: Epidemiological association of different Campylobacter jejuni groups with metabolism-associated genetic markers. Appl Env Microbiol 77, 23592365 (2011)

    • Search Google Scholar
    • Export Citation
  • 15.

    Li Z , Lou H, Ojcius DM, Sun A, Sun D, Zhao J, Lin X, Yan J: Methyl-accepting chemotaxis proteins 3 and 4 are responsible for Campylobacter jejuni chemotaxis and jejuna colonization in mice in response to sodium deoxycholate. J Med Microbiol 63, 343354 (2014)

    • Search Google Scholar
    • Export Citation
  • 16.

    Rahman H , King RM, Shewell LK, Semchenko EA, Hartley-Tassell LE, Wilson JC, Day CJ, Korolik V: Characterisation of a multi-ligand binding chemoreceptor CcmL (Tlp3) of Campylobacter jejuni. PLoS Pathog 10, e1003822 (2014)

    • Search Google Scholar
    • Export Citation
  • 17.

    Reuter M , van Vliet AH: Signal balancing by the CetABC and CetZ chemoreceptors controls energy taxis in Campylobacter jejuni. PLoS One 8, e54390 (2013)

    • Search Google Scholar
    • Export Citation
  • 18.

    Zautner AE , Ohk C, Tareen AM, Lugert R, Groß U: Epidemiological association of Campylobacter jejuni groups with pathogenicity-associated genetic markers. BMC Microbiol 12, 171 (2012)

    • Search Google Scholar
    • Export Citation
  • 19.

    Zautner AE , Masanta WO, Tareen AM, Weig M, Lugert R, Groß U, Bader O: Discrimination of multilocus sequence typing-based Campylobacter jejuni subgroups by MALDITOF mass spectrometry. BMC Microbiol 13, 247 (2013)

    • Search Google Scholar
    • Export Citation
  • 20.

    Zautner AE , Masanta WO, Weig M, Groß U, Bader O: Mass Spectrometry-based PhyloProteomics (MSPP): A novel microbial typing Method. Sci Rep 5, 13431 (2015)

    • Search Google Scholar
    • Export Citation
  • 21.

    Vandamme P , Van Doorn LJ, al Rashid ST, Quint WG, van der Plas J, Chan VL, On SL: Campylobacter hyoilei Alderton et al. 1995 and Campylobacter coli Veron and Chatelain 1973 are subjective synonyms. Int, J Syst Bacteriol 47, 10551060 (1997)

    • Search Google Scholar
    • Export Citation
  • 22.

    Dingle KE , Colles FM, Wareing DR, Ure R, Fox AJ, Bolton FE, Bootsma HJ, Willems RJ, Urwin R, Maiden MC: Multilocus sequence typing system for Campylobacter jejuni. J Clin Microbiol 39, 1423 (2001)

    • Search Google Scholar
    • Export Citation
  • 23.

    Tamura K , Stecher G, Peterson D, Filipski A, Kumar S: MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30, 27252729 (2013)

    • Search Google Scholar
    • Export Citation
  • 24.

    Jolley KA , Chan MS, Maiden MC: mlstdbNet – distributed multi-locus sequence typing (MLST) databases. BMC Bioinf 5, 86 (2004)

  • 25.

    Sievers F , Higgins DG: Clustal omega. Curr Protoc Bioinforma 48, 3.13.13.13.16 (2014)

  • 26.

    Li W , Cowley A, Uludag M, Gur T, McWilliam H, Squizzato S, et al.: The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res 43, W580584 (2015)

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 48 37 1
PDF Downloads 47 38 5