View More View Less
  • 1 Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany

Upon differentiation, T cells acquire tissue-specific homing properties allowing efficient targeting of effector T cells into distinct inflamed organs. Priming of T cells within skin-draining, peripheral lymph nodes (pLNs) leads to the expression of E- and P-selectin ligands, which facilitate migration into inflamed skin, whereas activation within gut-draining, mesenteric LNs (mLNs) results in induction of chemokine receptor CCR9 and integrin α4β7, both required for migration of effector T cells into mucosal tissues. In addition to the local tissue microenvironment, both organ-specific dendritic cells and LN-resident stromal cells are critical factors to shape T cell migration properties. Here, we identify two additional homing-related molecules, CCR6 and Neuropilin-1 (Nrp1), upregulated in T cells early during differentiation solely in pLNs, but not mLNs. Surprisingly, intestinal inflammation resulted in an ameliorated induction of CCR6 and Nrp1 in pLNs, suggesting that a local inflammation within the gut can systemically alter T cell differentiation. Finally, transplantation of mLNs to a skin-draining environment revealed that LN stromal cells also contribute to efficient CCR6 induction in pLNs. Collectively, these findings identify further aspects of early T cell differentiation within skin-draining pLNs, which could be utilized to further develop tailored and highly specialized vaccination strategies.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1.

    Campbell DJ , Debes GF, Johnston B, Wilson E, Butcher EC.: Targeting T cell responses by selective chemokine receptor expression. Semin Immunol 15, 277286 (2003)

    • Search Google Scholar
    • Export Citation
  • 2.

    Agace WW : Tissue-tropic effector T cells: generation and targeting opportunities. Nat Rev Immunol 6, 682692 (2006)

  • 3.

    Masopust D , Schenkel JM: The integration of T cell migration, differentiation and function. Nat Rev Immunol 13, 309320 (2013)

  • 4.

    Mora JR , Bono MR, Manjunath N, Weninger W, Cavanagh LL, Rosemblatt M, von Andrian UH: Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature 424, 8893 (2003)

    • Search Google Scholar
    • Export Citation
  • 5.

    Johansson-Lindbom B , Svensson M, Wurbel MA, Malissen B, Marquez G, Agace W: Selective generation of gut tropic T cells in gut-associated lymphoid tissue (GALT): requirement for GALT dendritic cells and adjuvant. J Exp Med 198, 963969 (2003)

    • Search Google Scholar
    • Export Citation
  • 6.

    Iwata M , Hirakiyama A, Eshima Y, Kagechika H, Kato C, Song SY: Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527538 (2004)

    • Search Google Scholar
    • Export Citation
  • 7.

    Dudda JC , Lembo A, Bachtanian E, Huehn J, Siewert C, Hamann A, Kremmer E, Forster R, Martin SF: Dendritic cells govern induction and reprogramming of polarized tissue-selective homing receptor patterns of T cells: important roles for soluble factors and tissue microenvironments. Eur, J Immunol 35, 10561065 (2005)

    • Search Google Scholar
    • Export Citation
  • 8.

    Campbell DJ , Control of Homing Receptor Expression during Lymphocyte Differentiation, Activation, and Function. In Hamann A. and Engelhardt B. (Eds.) Leukocyte Trafficking. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2005, pp 131153.

    • Search Google Scholar
    • Export Citation
  • 9.

    Johansson-Lindbom B , Svensson M, Pabst O, Palmqvist C, Marquez G, Forster R, Agace WW: Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J Exp Med 202, 10631073 (2005)

    • Search Google Scholar
    • Export Citation
  • 10.

    Milling SW , Jenkins CD, Yrlid U, Cerovic V, Edmond H, McDonald V, Nassar M, Macpherson G: Steady-state migrating intestinal dendritic cells induce potent inflammatory responses in naive CD4+ T cells. Mucosal Immunol 2, 156165 (2009)

    • Search Google Scholar
    • Export Citation
  • 11.

    McCully ML , Ladell K, Hakobyan S, Mansel RE, Price DA, Moser B: Epidermis instructs skin homing receptor expression in human T cells. Blood 120, 45914598 (2012)

    • Search Google Scholar
    • Export Citation
  • 12.

    Campbell DJ , Butcher EC: Rapid acquisition of tissue-specific homing phenotypes by CD4+ T cells activated in cutaneous or mucosal lymphoid tissues. J Exp Med 195, 135141 (2002)

    • Search Google Scholar
    • Export Citation
  • 13.

    Siewert C , Menning A, Dudda J, Siegmund K, Lauer U, Floess S, Campbell DJ, Hamann A, Huehn J: Induction of organ-selective CD4+ regulatory T cell homing. Eur, J Immunol 37, 978989 (2007)

    • Search Google Scholar
    • Export Citation
  • 14.

    Stenstad H , Ericsson A, Johansson-Lindbom B, Svensson M, Marsal J, Mack M, Picarella D, Soler D, Marquez G, Briskin M, Agace WW: Gut associated lymphoid tissue primed CD4+ T cells display CCR9 dependent and independent homing to the small intestine. Blood 107, 34473454 (2006)

    • Search Google Scholar
    • Export Citation
  • 15.

    Gorfu G , Rivera-Nieves J, Ley K: Role of beta7 integrins in intestinal lymphocyte homing and retention. Curr Mol Med 9, 836850 (2009)

  • 16.

    Kim SV , Xiang WV, Kwak C, Yang Y, Lin XW, Ota M, Sarpel U, Rifkin DB, Xu R, Littman DR: GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science 340, 14561459 (2013)

    • Search Google Scholar
    • Export Citation
  • 17.

    Houston SA , Cerovic V, Thomson C, Brewer J, Mowat AM, Milling S: The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct. Mucosal Immunol 9, 468478 (2016)

    • Search Google Scholar
    • Export Citation
  • 18.

    Kleinewietfeld M , Puentes F, Borsellino G, Battistini L, Rotzschke O, Falk K: CCR6 expression defines regulatory effector/memory-like cells within the CD25+CD4+ T-cell subset. Blood 105, 28772886 (2005)

    • Search Google Scholar
    • Export Citation
  • 19.

    Romagnani S , Maggi E, Liotta F, Cosmi L, Annunziato F: Properties and origin of human Th17 cells. Mol Immunol 47, 37 (2009)

  • 20.

    Williams IR : CCR6 and CCL20: partners in intestinal immunity and lymphorganogenesis. Ann, N Y Acad Sci 1072, 5261 (2006)

  • 21.

    Varona R , Cadenas V, Flores J, Martinez AC, Marquez G: CCR6 has a non-redundant role in the development of inflammatory bowel disease. Eur, J Immunol 33, 29372946 (2003)

    • Search Google Scholar
    • Export Citation
  • 22.

    Varona R , Cadenas V, Gomez L, Martinez AC, Marquez G: CCR6 regulates CD4+ T-cell-mediated acute graft-versushost disease responses. Blood 106, 1826 (2005)

    • Search Google Scholar
    • Export Citation
  • 23.

    Hirota K , Yoshitomi H, Hashimoto M, Maeda S, Teradaira S, Sugimoto N, Yamaguchi T, Nomura T, Ito H, Nakamura T, Sakaguchi N, Sakaguchi S: Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med 204, 28032812 (2007)

    • Search Google Scholar
    • Export Citation
  • 24.

    Hedrick MN , Lonsdorf AS, Shirakawa AK, Richard Lee CC, Liao F, Singh SP, Zhang HH, Grinberg A, Love PE, Hwang ST, Farber JM: CCR6 is required for IL-23-induced psoriasis-like inflammation in mice. J Clin Invest 119, 23172329 (2009)

    • Search Google Scholar
    • Export Citation
  • 25.

    Villares R , Cadenas V, Lozano M, Almonacid L, Zaballos A, Martinez AC, Varona R: CCR6 regulates EAE pathogenesis by controlling regulatory CD4+ T-cell recruitment to target tissues. Eur, J Immunol 39, 16711681 (2009)

    • Search Google Scholar
    • Export Citation
  • 26.

    Kitamura K , Farber JM, Kelsall BL: CCR6 marks regulatory T cells as a colon-tropic, IL-10-producing phenotype. J Immunol 185, 32953304 (2010)

    • Search Google Scholar
    • Export Citation
  • 27.

    Steinfelder S , Floess S, Engelbert D, Haeringer B, Baron U, Rivino L, Steckel B, Gruetzkau A, Olek S, Geginat J, Huehn J, Hamann A: Epigenetic modification of the human CCR6 gene is associated with stable CCR6 expression in T cells. Blood 117, 28392846 (2011)

    • Search Google Scholar
    • Export Citation
  • 28.

    Sarris M , Andersen KG, Randow F, Mayr L, Betz AG: Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. Immunity 28, 402413 (2008)

    • Search Google Scholar
    • Export Citation
  • 29.

    Weiss JM , Bilate AM, Gobert M, Ding Y, Curotto De Lafaille MA, Parkhust CN, Xiong H, Dolpady J, Frey AB, Ruocco MG, Yang Y, Floess S, Huehn J, Oh S, Li MO, Niec RE, Rudensky AY, Dustin ML, Littman DR, Lafaille JJ: Neuropilin-1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ Treg cells. J Exp Med 209, 17231742 (2012)

    • Search Google Scholar
    • Export Citation
  • 30.

    Yadav M , Louvet C, Davini D, Gardner JM, Martinez-Llordella M, Bailey-Bucktrout S, Anthony BA, Sverdrup FM, Head R, Kuster DJ, Ruminski P, Weiss D, von Schack D, Bluestone JA: Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J Exp Med 209, 17131722 (2012)

    • Search Google Scholar
    • Export Citation
  • 31.

    Forster R , Braun A, Worbs T: Lymph node homing of T cells and dendritic cells via afferent lymphatics. Trends Immunol 33, 271280 (2012)

    • Search Google Scholar
    • Export Citation
  • 32.

    Kamath AT , Henri S, Battye F, Tough DF, Shortman K: Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood 100, 17341741 (2002)

    • Search Google Scholar
    • Export Citation
  • 33.

    Cerovic V , Houston SA, Scott CL, Aumeunier A, Yrlid U, Mowat AM, Milling SW: Intestinal CD103-dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunol 6, 104113 (2013)

    • Search Google Scholar
    • Export Citation
  • 34.

    Roozendaal R , Mebius RE: Stromal cell-immune cell interactions. Annu Rev Immunol 29, 2343 (2011)

  • 35.

    Malhotra D , Fletcher AL, Turley SJ: Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity. Immunol Rev 251, 160176 (2013)

    • Search Google Scholar
    • Export Citation
  • 36.

    Fletcher AL , Acton SE, Knoblich K: Lymph node fibroblastic reticular cells in health and disease. Nat Rev Immunol 15, 350361 (2015)

  • 37.

    Lukacs-Kornek V , Malhotra D, Fletcher AL, Acton SE, Elpek KG, Tayalia P, Collier AR, Turley SJ: Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat Immunol 12, 10961104 (2011)

    • Search Google Scholar
    • Export Citation
  • 38.

    Siegert S , Huang HY, Yang CY, Scarpellino L, Carrie L, Essex S, Nelson PJ, Heikenwalder M, Acha-Orbea H, Buckley CD, Marsland BJ, Zehn D, Luther SA: Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide. PLoS One 6, e27618 (2011)

    • Search Google Scholar
    • Export Citation
  • 39.

    Baptista AP , Roozendaal R, Reijmers RM, Koning JJ, Unger WW, Greuter M, Keuning ED, Molenaar R, Goverse G, Sneeboer MM, den Haan JM, Boes M, Mebius RE: Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. Elife 3, e04433 (2014)

    • Search Google Scholar
    • Export Citation
  • 40.

    Hammerschmidt SI , Ahrendt M, Bode U, Wahl B, Kremmer E, Forster R, Pabst O: Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J Exp Med 205, 24832490 (2008)

    • Search Google Scholar
    • Export Citation
  • 41.

    Molenaar R , Greuter M, van der Marel AP, Roozendaal R, Martin SF, Edele F, Huehn J, Forster R, O’Toole T, Jansen W, Eestermans IL, Kraal G, Mebius RE: Lymph node stromal cells support dendritic cell-induced gut-homing of T cells. J Immunol 183, 63956402 (2009)

    • Search Google Scholar
    • Export Citation
  • 42.

    Cording S , Wahl B, Kulkarni D, Chopra H, Pezoldt J, Buettner M, Dummer A, Hadis U, Heimesaat M, Bereswill S, Falk C, Bode U, Hamann A, Fleissner D, Huehn J, Pabst O: The intestinal micro-environment imprints stromal cells to promote efficient Treg induction in gut-draining lymph nodes. Mucosal Immunol 7, 359368 (2014)

    • Search Google Scholar
    • Export Citation
  • 43.

    Manicassamy S , Manoharan I: Mouse models of acute and chronic colitis. Methods Mol Biol 1194, 437448 (2014)

  • 44.

    Milpied P , Renand A, Bruneau J, Mendes-da-Cruz DA, Jacquelin S, Asnafi V, Rubio MT, MacIntyre E, Lepelletier Y, Hermine O: Neuropilin-1 is not a marker of human Foxp3+ Treg. Eur, J Immunol 39, 14661471 (2009)

    • Search Google Scholar
    • Export Citation
  • 45.

    Ellis LM : The role of neuropilins in cancer. Mol Cancer Ther 5, 10991107 (2006)

  • 46.

    Parikh AA , Fan F, Liu WB, Ahmad SA, Stoeltzing O, Reinmuth N, Bielenberg D, Bucana CD, Klagsbrun M, Ellis LM: Neuropilin-1 in human colon cancer: expression, regulation, and role in induction of angiogenesis. Am, J Pathol 164, 21392151 (2004)

    • Search Google Scholar
    • Export Citation
  • 47.

    Chyou S , Ekland EH, Carpenter AC, Tzeng TC, Tian S, Michaud M, Madri JA, Lu TT: Fibroblast-type reticular stromal cells regulate the lymph node vasculature. J Immunol 181, 38873896 (2008)

    • Search Google Scholar
    • Export Citation
  • 48.

    Fletcher AL , Malhotra D, Acton SE, Lukacs-Kornek V, Bellemare-Pelletier A, Curry M, Armant M, Turley SJ: Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells. Front Immun 2, 35 (2011), doi: 10.3389/fimmu.2011.00035

    • Search Google Scholar
    • Export Citation
  • 49.

    Hansen W , Hutzler M, Abel S, Alter C, Stockmann C, Kliche S, Albert J, Sparwasser T, Sakaguchi S, Westendorf AM, Schadendorf D, Buer J, Helfrich I: Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth. J Exp Med 209, 20012016 (2012)

    • Search Google Scholar
    • Export Citation
  • 50.

    Delgoffe GM , Woo SR, Turnis ME, Gravano DM, Guy C, Overacre AE, Bettini ML, Vogel P, Finkelstein D, Bonnevier J, Workman CJ, Vignali DA: Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature 501, 252256 (2013)

    • Search Google Scholar
    • Export Citation
  • 51.

    Yamazaki T , Yang XO, Chung Y, Fukunaga A, Nurieva R, Pappu B, Martin-Orozco N, Kang HS, Ma L, Panopoulos AD, Craig S, Watowich SS, Jetten AM, Tian Q, Dong C: CCR6 regulates the migration of inflammatory and regulatory T cells. J Immunol 181, 83918401 (2008)

    • Search Google Scholar
    • Export Citation
  • 52.

    Manel N , Unutmaz D, Littman DR: The differentiation of human T(H)-17 cells requires transforming growth factorbeta and induction of the nuclear receptor RORgammat. Nat Immunol 9, 641649 (2008)

    • Search Google Scholar
    • Export Citation
  • 53.

    Wang C , Kang SG, Lee J, Sun Z, Kim CH: The roles of CCR6 in migration of Th17 cells and regulation of effector T-cell balance in the gut. Mucosal Immunol 2, 173183 (2009)

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2020 0 2 2
Oct 2020 0 6 6
Nov 2020 0 6 2
Dec 2020 0 3 2
Jan 2021 0 3 2
Feb 2021 0 0 4
Mar 2021 0 0 0