View More View Less
  • 1 Charité — University Medicine Berlin

This review elaborates the development of germfree and gnotobiotic animal models and their application in the scientific field to unravel mechanisms underlying host—microbe interactions and distinct diseases. Strictly germfree animals are raised in isolators and not colonized by any organism at all. The germfree state is continuously maintained by birth, raising, housing and breeding under strict sterile conditions. However, isolator raised germfree mice are exposed to a stressful environment and exert an underdeveloped immune system. To circumvent these physiological disadvantages depletion of the bacterial microbiota in conventionally raised and housed mice by antibiotic treatment has become an alternative approach. While fungi and parasites are not affected by antibiosis, the bacterial microbiota in these “secondary abiotic mice” have been shown to be virtually eradicated. Recolonization of isolator raised germfree animals or secondary abiotic mice results in a gnotobiotic state. Both, germfree and gnotobiotic mice have been successfully used to investigate biological functions of the conventional microbiota in health and disease. Particularly for the development of novel clinical applications germfree mice are widely used tools, as summarized in this review further focusing on the modulation of bacterial microbiota in laboratory mice to better mimic conditions in the human host.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1.

    Lederberg J , McCray AT: Ome Sweet ‘Omics–a genealogical treasury of words. Scientist 15, 8 (2001)

  • 2.

    NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C, Baker CC, Di Francesco V, Howcroft TK, Karp RW, Lunsford RD, Wellington CR, Belachew T, Wright M, Giblin C, David H, Mills M, Salomon R, Mullins C, Akolkar B, Begg L, Davis C, Grandison L, Humble M, Khalsa J, Little AR, Peavy H, Pontzer C, Portnoy M, Sayre MH, Starke-Reed P, Zakhari S, Read J, Watson B, Guyer M: The NIH Human Microbiome Project. Genome Res 19, 23172323 (2009)

    • Search Google Scholar
    • Export Citation
  • 3.

    Lee YK , Mazmanin SK: Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330, 17681773 (2010)

    • Search Google Scholar
    • Export Citation
  • 4.

    Qin J , Li R, Raes J, Arumugam M, Solvsten Burgdorf K, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J-M, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Wang J: A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 5965 (2010)

    • Search Google Scholar
    • Export Citation
  • 5.

    The Human Microbiome Project Consortium: Structure, function and diversity of the healthy human microbiome. Nature 486, 207214 (2012)

    • Search Google Scholar
    • Export Citation
  • 6.

    Baker DG : Natural pathogens of laboratory mice, rats, and rabbits and their effects on research. Clin Microbiol Rev 11, 231266 (1998)

    • Search Google Scholar
    • Export Citation
  • 7.

    Luckey TD (1963): Germfree life and gnotobiology. Academic Press–New York. pp. 1497

  • 8.

    Al-Asmakh M , Zadjali F: Use of germ-free animal models in microbiota-related research. J Microbiol Biotechnol 25, 15831588 (2015)

  • 9.

    Pasteur L : Observation relative à la note précédente de M. Duclaux. Compte Rendus de l’Acad Sci 100, 68 (1885)

  • 10.

    Nuttal GHF , Thierfelder H: Thierisches Leben ohne Bakterien im Verdauungskanal. Z Physiol Chem 21, 109121 (1895)

  • 11.

    Gilbert JA , Neufeld JD: Life in a world without microbes. PLoS Biol 12, e1002020 (2014)

  • 12.

    Gordon HA , Bruckner-Kardoss E, Wostmann BS: Ageing in germfree mice: life tables and lesions observed in natural death. J Gerontol 21, 380387 (1966)

    • Search Google Scholar
    • Export Citation
  • 13.

    Cohendy M , Wollmann E, presentée par M. Roux: Bacteriologie. Expériences sur la vie sans microbes. Elevage aseptique de cobayes. Compt Rend Acad Sci (Paris) 158, 12831284 (1914)

    • Search Google Scholar
    • Export Citation
  • 14.

    Cohendy M , Wollmann E: Quelques resultats acquis par la method des élevages aseptique. Compt Rend Acad Sci (Paris) 174, 10821084 (1922)

    • Search Google Scholar
    • Export Citation
  • 15.

    Cohendy M : Expériences sur la vie sans microbes. Ann Inst Pasteur (Paris) 26, 106137 (1912)

  • 16.

    Cohendy M , presentée par M. E. Roux: Bacteriologie. Expériences sur la vie sans microbes. Compt Rend Acad Sci (Paris) 154, 533536 (1912)

    • Search Google Scholar
    • Export Citation
  • 17.

    Schottelius M : Die Bedeutung der Darmbacterien für die Ernährung. I. Arch Hyg 34, 210234 (1899)

  • 18.

    Juhr NC : Gewinnung und Aufzucht gnotobiotischer kleiner Wiederkäuer. Herausgegeben von der Fachrichtung Versuchstierkunde und Versuchstierkrankheiten der Freien Universität Berlin. Tierlaboratorium 3, 194207 (1976)

    • Search Google Scholar
    • Export Citation
  • 19.

    Glimstedt G : Das Leben ohne Bakterien. Sterile Aufziehung von Meerschweinchen (Verhandl. Anat. Ges. Jena). Anat Anz 75, 7989 (1932)

  • 20.

    Gordon HA : The use of germfree vertebrates in the study of “physiological” effects of the normal microbial flora (An aid to elucidate the possible role of intestinal toxic products on ageing). Gerontologia 3, 101114 (1959)

    • Search Google Scholar
    • Export Citation
  • 21.

    Miyakawa M , Iijima R, Kobayashi R, Tajima M, Isomura N, Shimizu T, Kobayashi I, Asano M: Report on success of long duration rearing of germfree guinea pigs. Trans Soc Pathol Japon 43, 450452 (1954)

    • Search Google Scholar
    • Export Citation
  • 22.

    Reyniers JA : Design and operation of apparatus for rearing germfree animals. Ann NY Acad Sci 78, 4779 (1959)

  • 23.

    Gustafsson B : Germ-free rearing of rats. Acta Anat (Basel) 2(3–4), 376391 (1946–1947)

  • 24.

    Spiegel A : Gnotobiotic animals in medicine and biology [German]. Naturwissenschaften 59, 2934 (1972)

  • 25.

    Pleasants J : Rearing germfree cesarean-born rats, mice and rabbits through weaning. Ann New York Acad Sci 78, 116 (1959)

  • 26.

    Christensen CR , Andrews KR, Bower JL, Hamermesh RG, Porter ME (1982): Business Policy: Text and Cases. 5th ed. Homewood, IL: Richard D. Irwin, p. 54

    • Search Google Scholar
    • Export Citation
  • 27.

    Charles River Laboratories International, Inc.: www.criver.com

  • 28.

    Filiano AJ : Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535, 425429 (2016)

  • 29.

    Vuong HE , Hsiao EY: Emerging roles for the gut microbiome in autism spectrum disorder. Biol Psychiatry pii: S0006-3223(16)32724-X (2016)

    • Search Google Scholar
    • Export Citation
  • 30.

    Hansen AK , Friis Hansen CH, Krych L, Nielsen DS: Impact of the gut microbiota on rodent models of human disease. World J Gastroenterol 20, 1772717736 (2014)

    • Search Google Scholar
    • Export Citation
  • 31.

    Tlaskalová-Hogenová H , Stepánková R, Hudcovic T, Tucková L, Cukrowska B, Lodinová-Zádníková R, Kozáková H, Rossmann P, Bártová J, Sokol D, Funda DP, Borovská D, Reháková Z, Sinkora J, Hofman J, Drastich P, Kokesová A: Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett 93, 97108 (2004)

    • Search Google Scholar
    • Export Citation
  • 32.

    Hazebrouck S , Przybylski-Nicaise L, Ah-Leung S, Adel-Patient K, Corthier G, Wal JM, Rabot S: Allergic sensitization to bovine beta-lactoglobulin: comparison between germfree and conventional BALB/c mice. Int Arch Allergy Immunol 148, 6572 (2009)

    • Search Google Scholar
    • Export Citation
  • 33.

    Rodriguez B , Prioult G, Bibiloni R, Nicolis I, Mercenier A, Butel MJ, Waligora-Dupriet AJ: Germfree status and altered caecal subdominant microbiota are associated with a high susceptibility to cow’s milk allergy in mice. FEMS Microbiol Ecol 76, 133144 (2011)

    • Search Google Scholar
    • Export Citation
  • 34.

    Taurog JD , Richardson JA, Croft JT, Simmons WA, Zhou M, Fernández-Sueiro JL, Balish E, Hammer RE: The germ free state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 180, 23592364 (1994)

    • Search Google Scholar
    • Export Citation
  • 35.

    Dianda L , Hanby AM, Wright NA, Sebesteny A, Hayday AC, Owen MJ: T cell receptor-alpha beta-deficient mice fail to develop colitis in the absence of a microbial environment. Am J Pathol 150, 9197 (1997)

    • Search Google Scholar
    • Export Citation
  • 36.

    Mahowald MA , Rey FE, Seedorf H, Turnbaugh PJ, Fulton RS, Wollam A, Shah N, Wang C, Magrini V, Wilson RK, Cantarel BL, Coutinho PM, Henrissat B, Crock LW, Russell A, Verberkmoes NC, Hettich RL, Gordon JI: Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci USA 106, 58595864 (2009)

    • Search Google Scholar
    • Export Citation
  • 37.

    Denou E , Rezzonico E, Panoff JM, Arigoni F, Brussow H: A mesocosm of Lactobacillus johnsonii, Bifidobacterium longum and Escherichia coli in the mouse gut. DNA Cell Biol 28, 413422 (2009)

    • Search Google Scholar
    • Export Citation
  • 38.

    Martin FP , Wang Y, Sprenger N, Yap IK, Lundstedt T, Lek P, Rezzi S, Ramadan Z, van Bladeren P, Fay LB, Kochhar S, Lindon JC, Holmes E, Nicholson JK: Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model. Mol Syst Biol 4, 157 (2008)

    • Search Google Scholar
    • Export Citation
  • 39.

    Becker N , Kunath J, Loh G, Blaut M: Human intestinal microbiota: Characterization of a simplified and stable gnotobiotic rat model. Gut Microbes 2, 2533 (2011)

    • Search Google Scholar
    • Export Citation
  • 40.

    Cotter PD : The impact of antibiotics on the gut microbiota as revealed by high throughput DNA sequencing in discovery medicine. Discov Med 13, 193199 (2012)

    • Search Google Scholar
    • Export Citation
  • 41.

    Sekirov I , Tam NM, Jogova M, Robertson ML, Li Y, Lupp C, Finlay BB: Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect Immun 76, 47264736 (2008)

    • Search Google Scholar
    • Export Citation
  • 42.

    Bartosch S , Fite A, Macfarlane GT, McMurdo ME: Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the faecal microbiota. Appl Environ Microbiol 70, 35753581 (2004)

    • Search Google Scholar
    • Export Citation
  • 43.

    Palmer C , Bik EM, DiGiulio DB, Relman DA, Brown PO: Development of the human infant intestinal microbiota. PLoS Biol 5, e177 (2007)

  • 44.

    Membrez M , Blancher F, Jaquet M, Bibiloni R, Cani PD, Burcelin RG, Corthesy I, Macé K, Chou CJ: Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J 22, 24162426 (2008)

    • Search Google Scholar
    • Export Citation
  • 45.

    Robinson CJ , Young VB: Antibiotic administration alters the community structure of the gastrointestinal microbiota. Gut Microbes 1, 279284 (2010)

    • Search Google Scholar
    • Export Citation
  • 46.

    Heimesaat MM , Bereswill S, Fischer A, Fuchs D, Struck D, Niebergall J, Jahn HK, Dunay IR, Moter A, Gescher DM, Schumann RR, Göbel UB, Liesenfeld O: Gram-negative bacteria aggravate murine small intestinal Th1-type immunopathology following peroral infection with Toxoplasma gondii. J Immunol 177, 87858795 (2006)

    • Search Google Scholar
    • Export Citation
  • 47.

    Burrows MP , Volchkov P, Kobayashi KS, Chervonsky AV: Microbiota regulates type 1 diabetes through Toll-like receptors. Proc Natl Acad Sci USA 112, 99739977 (2015)

    • Search Google Scholar
    • Export Citation
  • 48.

    Nicholson JK , Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S: Host–gut microbiota metabolic interactions. Science 8, 12621267 (2012)

    • Search Google Scholar
    • Export Citation
  • 49.

    Gilbert JA , Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, Jansson JK, Dorrestein PC, Knight R: Microbiomewide association studies link dynamic microbial consortia to disease. Nature 535, 94103 (2016)

    • Search Google Scholar
    • Export Citation
  • 50.

    Budden K , Gellatly SL, Wood DLA, Cooper MA, Morrison M, Hugenholtz P, Hansbro PM: Emerging pathogenic links between microbiota and the gut–lung axis. Nat Rev Microbiol (2016) Oct 3. Doi: 10.1038/nrmicro.2016.142 (ahead of print)

    • Search Google Scholar
    • Export Citation
  • 51.

    Villarino N , LeCleir GR, Denny JE, Dearth SP, Harding CL, Sloan SS, Gribble JL, Campagna SR, Wilhelm SW, Schmidt NW: Composition of the gut microbiota modulates the severity of malaria. Proc Natl Acad Sci USA 113, 22352240 (2016)

    • Search Google Scholar
    • Export Citation
  • 52.

    Ling Z , Jin C, Xie T, Cheng Y, Li L, Wu N: Alterations in the fecal microbiota of patients with HIV-1 infection: An observational study in a Chinese population. Sci Rep 6, 30673 (2016)

    • Search Google Scholar
    • Export Citation
  • 53.

    Chou H-H , Chien W-H, Wu L-L, Cheng C-H, Chung C-H, Horng J-H, Ni Y-H, Tseng H-T, Wu D, Lu X, Wang H-Y, Chen P-J, Chen D-S: Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota. Proc Natl Acad Sci USA 112, 21752180 (2015)

    • Search Google Scholar
    • Export Citation
  • 54.

    Yi P , Li L: The germfree murine animal: An important animal model for research on the relationship between gut microbiota and the host. Vet Microbiol 157, 17 (2012)

    • Search Google Scholar
    • Export Citation
  • 55.

    Arumugam M , Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto J-M, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J, Antolín M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Mérieux A, Melo Minardi R, M'rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P: Enterotypes of the human gut microbiome. Nature 473, 174180 (2011)

    • Search Google Scholar
    • Export Citation
  • 56.

    Zoetendal EG , Rajilic-Stojanovic M, de Vos WM: Highthroughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57, 16051615 (2008)

    • Search Google Scholar
    • Export Citation
  • 57.

    Kurokawa K , Itoh T, Kuwahara T, Oshima K, Toh H, Toyo da A, Hideto Takami, Morita H, Sharma VK, Srivastava TP, Taylor TD, Noguchi H, Mori H, Ogura Y, Ehrlich DS, Itoh K, Takagi T, Sakaki Y, Hayashi T, Hattori M: Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14, 169181 (2007)

    • Search Google Scholar
    • Export Citation
  • 58.

    Tap J , Mondot S, Levenez F, Pelletier E, Caron C, Furet JP, Ugarte E, Muñoz-Tamayo R, Paslier DL, Nalin R, Dore J, Leclerc M: Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11, 25742584 (2009)

    • Search Google Scholar
    • Export Citation
  • 59.

    Velagapudi VR , Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L, Islam S, Felin J, Perkins R, Borén J, Oresic M, Bäckhed F: The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res 51, 11011112 (2010)

    • Search Google Scholar
    • Export Citation
  • 60.

    Spanogiannopoulos P , Bess EN, Carmody RN, Turnbaugh PJ: The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nature Rev Microbiol 14, 273287 (2016)

    • Search Google Scholar
    • Export Citation
  • 61.

    Abdollahi-Roodsaz S , Abramson SB, Scher JU: The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions. Nat Rev Rheumatol 12, 446455 (2016)

    • Search Google Scholar
    • Export Citation
  • 62.

    Björkholm B , Bok CM, Lundin A, Rafter J, Hibberd ML, Pettersson S: Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS One 4, e6958 (2009)

    • Search Google Scholar
    • Export Citation
  • 63.

    Meinl W , Sczesny S, Brigelius-Flohé R, Blaut M, Glatt H: Impact of gut microbiota on intestinal and hepatic levels of phase 2 xenobiotic-metabolizing enzymes in the rat. Drug Metab Dispos 37, 11791186 (2009)

    • Search Google Scholar
    • Export Citation
  • 64.

    Selwyn FP , Cheng SL, Bammler TK, Prasad B, Vrana M, Klaassen C, Cui JY: Developmental regulation of drugprocessing genes in livers of germfree mice. Toxicol Sci 147, 84103 (2015)

    • Search Google Scholar
    • Export Citation
  • 65.

    Tremaroli V , Bäckhed F: Functional interactions between the gut microbiota and host metabolism. Nature 489, 242249 (2012)

  • 66.

    Ley RE , Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI: Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102, 1107011075 (2005)

    • Search Google Scholar
    • Export Citation
  • 67.

    Ley RE , Turnbaugh PJ, Klein S, Gordon JI: human gut microbes associated with obesity. Nature 444, 10221023 (2006)

  • 68.

    Turnbaugh PJ , Bäckhed F, Fulton L, Gordon JI: Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 17, 213223 (2008)

    • Search Google Scholar
    • Export Citation
  • 69.

    Turnbaugh PJ , Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI: A core gut microbiome in obese and lean twins. Nature 457, 480484 (2009)

    • Search Google Scholar
    • Export Citation
  • 70.

    Turnbaugh PJ , Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI: An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 10271031 (2006)

    • Search Google Scholar
    • Export Citation
  • 71.

    Rabot S , Membrez M, Bruneau A, Gerard P, Harach T, Moser M, Raymond F, Mansourian R, Chou CJ: Germfree C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J 24, 49484959 (2010)

    • Search Google Scholar
    • Export Citation
  • 72.

    Rabot S , Membrez M, Blancher F, Berger B, Moine D, Krause L, Bibiloni R, Bruneau A, Gérard P, Siddharth J, Lauber CL, Chou CJ: High fat diet drives obesity regardless the composition of gut microbiota in mice. Sci Rep 6, 32484 (2016)

    • Search Google Scholar
    • Export Citation
  • 73.

    Schwabe RF , Jobin C: The microbiome and cancer. Nat Rev Cancer 13, 800812 (2013)

  • 74.

    Mueller C , Macpherson AJ: Layers of mutualism with commensal bacteria protect us from intestinal inflammation. Gut 55, 276284 (2006)

  • 75.

    Guarner F , Malagelada JR: Gut flora in health and disease. Lancet 361, 512519 (2003)

  • 76.

    Chen HM , Yu YN, Wang JL, Lin YW, Kong X, Yang CQ, Yang L, Liu ZJ, Yuan YZ, Liu F, Wu JX, Zhong L, Fang DC, Zou W, Fang JY: Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am J Clin Nutr 97, 10441052 (2013)

    • Search Google Scholar
    • Export Citation
  • 77.

    Chen W , Liu F, Ling Z, Tong X, Xiang C: Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One 7, e39743 (2012)

    • Search Google Scholar
    • Export Citation
  • 78.

    Kostic AD , Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, Baselga J, Liu C, Shivdasani RA, Ogino S, Birren BW, Huttenhower C, Garrett WS, Meyerson M: Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22, 292298 (2012)

    • Search Google Scholar
    • Export Citation
  • 79.

    Geng J , Fan H, Tang X, Zhai H, Zhang Z: Diversified pattern of the human colorectal cancer microbiome. Gut Pathog 5, 2 (2013)

  • 80.

    Shen XJ , Rawls JF, Randall T, Burcal L, Mpande CN, Jenkins N, Jovov B, Abdo Z, Sandler RS, Keku TO: Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes 1, 138147 (2010)

    • Search Google Scholar
    • Export Citation
  • 81.

    Sobhani I , Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, Corthier G, Tran Van Nhieu J, Furet JP: Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 6, e16393 (2011)

    • Search Google Scholar
    • Export Citation
  • 82.

    Wang T , Cai G, Qiu Y, Fei N, Zhang M, Pang X, Jia W, Cai S, Zhao L: Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 6, 320329 (2012)

    • Search Google Scholar
    • Export Citation
  • 83.

    Weir TL , Manter, DK, Sheflin, AM, Barnett BA, Heuberger AL, Ryan EP: Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One 8, e70803 (2013)

    • Search Google Scholar
    • Export Citation
  • 84.

    Zackular JP , Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen GY, Schloss PD: The gut microbiome modulates colon tumorigenesis. MBio 4, e00692-13 (2013)

    • Search Google Scholar
    • Export Citation
  • 85.

    Dapito DH , Mencin A, Gwak GY, Pradere JP, Jang MK, Mederacke I, Caviglia JM, Khiabanian H, Adeyemi A, Bataller R, Lefkowitch JH, Bower M, Friedman R, Sartor RB, Rabadan R, Schwabe RF: Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21, 504516 (2012)

    • Search Google Scholar
    • Export Citation
  • 86.

    Boleij A , Tjalsma H: Gut bacteria in health and disease: a survey on the interface between intestinal microbiology and colorectal cancer. Biol Rev 87, 701730 (2012)

    • Search Google Scholar
    • Export Citation
  • 87.

    Zhang Y-J , Li S, Gan R-Y, Zhou T, Xu D-P, Li H-B: Impacts of gut bacteria on human health and diseases. Int J Mol Sci 16, 74937519 (2015)

    • Search Google Scholar
    • Export Citation
  • 88.

    Viaud S , Saccheri F, Mignot G, Yamazaki T, Daillere R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, Schlitzer A, Ginhoux F, Apetoh L, Chachaty E, Woerther PL, Eberl G, Bérard M, Ecobichon C, Clermont D, Bizet C, Gaboriau-Routhiau V, Cerf-Bensussan N, Opolon P, Yessaad N, Vivier E, Ryffel B, Elson CO, Doré J, Kroemer G, Lepage P, Boneca IG, Ghiringhelli F, Zitvogel L: The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971976 (2013)

    • Search Google Scholar
    • Export Citation
  • 89.

    Li J , Sung CYJ, Lee N, Ni Y, Pihlajamäki J, Panagiotou G, El-Nezami H: Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci USA 113, E1306E1315 (2016)

    • Search Google Scholar
    • Export Citation
  • 90.

    Fava F , Danese S: Intestinal microbiota in inflammatory bowel disease: friend of foe? World J Gastroenterol 17, 557566 (2011)

  • 91.

    Reiff C , Kelly D: Inflammatory bowel disease, gut bacteria and probiotic therapy. Int J Med Microbiol 300, 2533 (2010)

  • 92.

    Baumgart DC , Carding SR: Inflammatory bowel disease: cause and immunobiology. Lancet 369, 16271640 (2007)

  • 93.

    Baumgart DC , Sandborn WJ: Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369, 16411657 (2007)

    • Search Google Scholar
    • Export Citation
  • 94.

    Xavier RJ , Podolsky DK: Unravelling the pathogenesis of inflammatory bowel disease. Nature 448, 427434 (2007)

  • 95.

    Simpson HL , Campbell BJ, Rhodes JM: IBD: microbiota manipulation through diet and modified bacteria. Dig Dis 32, 1825 (2014)

  • 96.

    Johansson MEV , Gustafsson JK, Holmen-Larsson J, Jabbar KS, Xia LJ, Xu H, Ghishan FK, Carvalho FA, Gewirtz AT, Sjovall H, Hansson GC: Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 63, 281291 (2014)

    • Search Google Scholar
    • Export Citation
  • 97.

    Ordas I , Eckmann L, Talamini M, Baumgart DC, Sandborn WJ: Ulcerative colitis. Lancet 380, 16061619 (2012)

  • 98.

    Hold GL , Smith M, Grange C, Watt ER, El-Omar EM, Mukhopadhya I: Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years? World J Gastroenterol 20, 11921210 (2014)

    • Search Google Scholar
    • Export Citation
  • 99.

    Morgan XC , Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C: Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13, R79 (2012)

    • Search Google Scholar
    • Export Citation
  • 100.

    Tong M , Li X, Wegener Parfrey L, Roth B, Ippoliti A, Wei B, Borneman J, McGovern DP, Frank DN, Li E, Horvath S, Knight R, Braun J: A modular organization of the human intestinal mucosal microbiota and its association with inflammatory bowel disease. PLoS One 8, e80702 (2013)

    • Search Google Scholar
    • Export Citation
  • 101.

    Pizarro TT , Arseneau KO, Cominelli F: Lessons from genetically engineered animal models XI. Novel mouse models to study pathogenic mechanisms of Crohn’s disease. Am J Physiol Gastrointest Liver Physiol 278, G665G669 (2000)

    • Search Google Scholar
    • Export Citation
  • 102.

    Barnett M , Fraser, A (2011): Animal Models of Colitis: Lessons Learned, and Their Relevance to the Clinic. In: Ulcerative Colitis–Treatments, Special Populations and the Future, ed O’Connor M., InTech., pp. 161178

    • Search Google Scholar
    • Export Citation
  • 103.

    Alex P , Zachos NC, Nguyen T, Gonzales L, Chen TE, Conklin LS, Centola M, Li X: Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm Bowel Dis 15, 341352 (2009)

    • Search Google Scholar
    • Export Citation
  • 104.

    Kiesler P , Fuss IJ, Strober W: Experimental models of inflammatory bowel diseases. Cell Mol Gastroenterol Hepatol 1, 154170 (2015)

  • 105.

    Mizoguchi A , Mizoguchi E: Animal models of IBD: linkage to human disease. Curr Opin Pharmacol 10, 578587 (2010)

  • 106.

    Eckmann L : Animal models of inflammatory bowel disease: lessons from enteric infections. Ann NY Acad Sci 1072, 2838 (2006)

  • 107.

    Uhlig HH , Powrie F: Mouse models of intestinal inflammation as tools to understand the pathogenesis of inflammatory bowel disease. Eur J Immunol 39, 20212026 (2009)

    • Search Google Scholar
    • Export Citation
  • 108.

    Elson CO , Cong Y, McCracken VJ, Dimmitt RA, Lorenz RG, Weaver CT: Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol Rev 206, 260276 (2005)

    • Search Google Scholar
    • Export Citation
  • 109.

    Pizarro TT , Arseneau KO, Bamias G, Cominelli F: Mouse models for the study of Crohn’s disease. Trends Mol Med 9, 218222 (2003)

  • 110.

    Sellon RK , Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, Rennick DM, Sartor RB: Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 66, 52245231 (1998)

    • Search Google Scholar
    • Export Citation
  • 111.

    Nell S , Suerbaum S, Josenhans C: The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nature Rev Microbiol 8, 564577 (2010)

    • Search Google Scholar
    • Export Citation
  • 112.

    Ostanin DV , Bao J, Koboziev I, Gray L, Robinson-Jackson SA, Kosloski-Davidson M, Price VH, Grisham MB: T cell transfer model of chronic colitis: concepts, considerations, and tricks of the trade. Am J Physiol Gastrointest Liver Physiol 296, G135G146 (2009)

    • Search Google Scholar
    • Export Citation
  • 113.

    Strauch UG , Obermeier F, Grunwald N, Gürster S, Dunger N, Schultz M, Griese DP, Mähler M, Schölmerich J, Rath HC: Influence of intestinal bacteria on induction of regulatory T cells: lessons from a transfer model of colitis. Gut 54, 15461552 (2005)

    • Search Google Scholar
    • Export Citation
  • 114.

    Feng T , Elson CO, Cong Y: Microbiota: Dual-faceted player in experimental colitis. Gut Microbes 1, 388391 (2010)

  • 115.

    Egan CE , Cohen SB, Denkers EY: Insights into inflammatory bowel disease using Toxoplasma gondii as an infectious trigger. Immunolog Cell Biol 90, 668675 (2012)

    • Search Google Scholar
    • Export Citation
  • 116.

    Liesenfeld O : Oral infection of C57BL/6 mice with Toxoplasma gondii: a new model of inflammatory bowel disease? J Infect Dis 185, S96S101 (2002)

    • Search Google Scholar
    • Export Citation
  • 117.

    Heimesaat MM , Fischer A, Jahn H-K, Niebergall J, Freudenberg M, Blaut M, Liesenfeld O, Schumann RR, Göbel UB, Bereswill S: Exacerbation of murine ileitis by Toll-like receptor 4 mediated sensing of lipopolysaccharide from commensal Escherichia coli. Gut 56, 941948 (2007)

    • Search Google Scholar
    • Export Citation
  • 118.

    Swidsinski A , Weber J, Loening-Baucke V, Hale LP, Lochs H: Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol 43, 33803389 (2005)

    • Search Google Scholar
    • Export Citation
  • 119.

    Masseret E , Boudeau J, Colombel JF, Neut C, Desreumaux P, Joly B, Cortot A, Darfeuille-Michaud A: Genetically related Escherichia coli strains associated with Crohn’s disease. Gut 48, 320325 (2001)

    • Search Google Scholar
    • Export Citation
  • 120.

    Seksik P , Rigottier-Gois L, Gramet G, Sutren M, Pochart P, Marteau P, Jian R, Doré J: Alterations of the dominant faecal bacterial groups in patients with Crohn’s disease of the colon. Gut 52, 237242 (2003)

    • Search Google Scholar
    • Export Citation
  • 121.

    Darfeuille-Michaud A , Boudeau J, Bulois P, Neut C, Glasser AL, Barnich N, Bringer MA, Swidsinski A, Beaugerie, L, Colombel, JF: High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterol 127, 412421 (2004)

    • Search Google Scholar
    • Export Citation
  • 122.

    Matsumoto S , Okabe Y, Setoyama H, Takayama K, Ohtsuka J, Funahashi H, Imaoka A, Okada Y, Umesaki Y: Inflammatory bowel disease-like enteritis and caecitis in a senescence accelerated mouse P1/Yit strain. Gut 43, 7178 (1998)

    • Search Google Scholar
    • Export Citation
  • 123.

    Schaubeck M , Clavel T, Calasan J, Ilias Lagouvardos I, Change SB, Jehmlich N, Basic M, Dupont A, Hornef M, von Bergen M, Bleich A, Haller D: Dysbiotic gut microbiota causes transmissible Crohn’s disease-like ileitis independent of failure in antimicrobial defence. Gut 65, 225237 (2016)

    • Search Google Scholar
    • Export Citation
  • 124.

    Gordon HA , Pesti L: The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriol Rev 35, 390429 (1971)

  • 125.

    Sartor RB : Microbial influences in inflammatory bowel diseases. Gastroenterol 134, 577594 (2008)

  • 126.

    Reddy SS , Brandt LJ: Clostridium difficile infection and inflammatory bowel disease. J Clin Gastroenterol 47, 666671 (2013)

  • 127.

    Deshpande A , Pasupuleti V, Pant C, Rolston DD, Sferra TJ: Diagnostic testing for Clostridium difficile infection in patients with inflammatory bowel disease. J Clin Gastroenterol 47, 737738 (2013)

    • Search Google Scholar
    • Export Citation
  • 128.

    Markowitz JE , Brown KA, Mamula P, Drott HR, Piccoli DA, Baldassano RN: Failure of single-toxin assays to detect Clostridium difficile infection in pediatric inflammatory bowel disease. Am J Gastroenterol 96, 26882690 (2001)

    • Search Google Scholar
    • Export Citation
  • 129.

    Kim H , Rhee SH, Pothoulakis C, Lamont JT: Inflammation and apoptosis in Clostridium difficile enteritis is mediated by PGE2 up-regulation of Fas ligand. Gastroenterol 133, 875886 (2007)

    • Search Google Scholar
    • Export Citation
  • 130.

    Issa M , Vijayapal A, Graham MB, Beaulieu DB, Otterson MF, Lundeen S, Skaros S, Weber LR, Komorowski RA, Knox JF, Emmons J, Bajaj JS, Binion DG: Impact of Clostridium difficile on inflammatory bowel disease. Clin Gastroenterol Hepatol 5, 345351 (2007)

    • Search Google Scholar
    • Export Citation
  • 131.

    Wilson KH , Sheagren JN, Freter R, Weatherbee L, Lyerly D: Gnotobiotic models for study of the microbial ecology of Clostridium difficile and Escherichia coli. J Infect Dis 153, 547551 (1986)

    • Search Google Scholar
    • Export Citation
  • 132.

    Reeves AE , Koenigsknecht MJ, Bergin IL, Young VB: Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect Immun 80, 37863794 (2012)

    • Search Google Scholar
    • Export Citation
  • 133.

    Standaert-Vitse A , Jouault T, Vandewalle P, Mille C, Seddik M, Sendid B, Mallet JM, Colombel JF, Poulain D: Candida albicans is an immunogen for anti-Saccharomyces cerevisiae antibody markers of Crohn’s disease. Gastroenterol 130, 17641775 (2006)

    • Search Google Scholar
    • Export Citation
  • 134.

    Standaert-Vitse A , Sendid B, Joossens M, François N, Vandewalle-El Khoury P, Branche J, Van Kruiningen H, Jouault T, Rutgeerts P, Gower-Rousseau C, Libersa C, Neut C, Broly F, Chamaillard M, Vermeire S, Poulain D, Colombel JF: Candida albicans colonization and ASCA in familial Crohn’s disease. Am J Gastroenterol 104, 17451753 (2009)

    • Search Google Scholar
    • Export Citation
  • 135.

    Balish E , Phillips AW: Growth, morphogenesis, and virulence of Candida albicans after oral inoculation in the germ free and conventional chick. J Bacteriol 91, 17361743 (1966)

    • Search Google Scholar
    • Export Citation
  • 136.

    Clark JD : Influence of antibiotics or certain intestinal bacteria on orally administered Candida albicans in germfree and conventional mice, infection and immunity. Infect Immun 4, 731737 (1971)

    • Search Google Scholar
    • Export Citation
  • 137.

    Balish E , Phillips AW: Growth and invasiveness of Candida albicans in the germfree and conventional mouse after oral challenge. Appl Microbiol 14, 737741 (1966)

    • Search Google Scholar
    • Export Citation
  • 138.

    Huijsdens XW , Linskens RK, Taspinar H, Meuwissen SG, Vandenbroucke-Grauls CM, Savelkoul PH: Listeria monocytogenes and inflammatory bowel disease: detection of Listeria species in intestinal mucosal biopsies by real-time PCR. Scand J Gastroenterol 38, 332333 (2003)

    • Search Google Scholar
    • Export Citation
  • 139.

    Inagaki H , Suzuki T, Nomoto K, Yoshikai Y: Increased susceptibility to primary infection with Listeria monocytogenes in germfree mice may be due to lack of accumulation of L-selectin+ CD44+ T cells in sites of inflammation. Infect Immun 64, 32803287 (1996)

    • Search Google Scholar
    • Export Citation
  • 140.

    Basset C , Holton J, Bazeos A, Vaira D, Bloom S: Are Helicobacter species and enterotoxigenic Bacteroides fragilis involved in inflammatory bowel disease? Dig Dis Sci 49, 14251432 (2004)

    • Search Google Scholar
    • Export Citation
  • 141.

    Toprak NU , Yagci A, Gulluoglu BM, Akin ML, Demirkalem P, Celenk T, Soyletir G: A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect 12, 782786 (2006)

    • Search Google Scholar
    • Export Citation
  • 142.

    Sartor RB , Mazmanian SK: Intestinal microbes in inflammatory bowel diseases. Am J Gastroenterol (Suppl 1) 1521 (2012)

  • 143.

    Prindiville TP , Sheikh RA, Cohen SH, Tang YJ, Cantrell MC, Silva JJ: Bacteroides fragilis enterotoxin gene sequences in patients with inflammatory bowel disease. Emerg Infect Dis 6, 171174 (2000)

    • Search Google Scholar
    • Export Citation
  • 144.

    Rabizadeh S , Rhee KJ, Wu S, Huso D, Gan CM, Golub JE, Wu X, Zhang M, Sears CL: Enterotoxigenic Bacteroides fragilis: a potential instigator of colitis. Inflamm Bowel Dis 13, 14751483 (2007)

    • Search Google Scholar
    • Export Citation
  • 145.

    Chiu CC , Ching YH, Wang YC, Liu JY, Li YP, Huang YT, Chuang HL: Monocolonization of germfree mice with Bacteroides fragilis protects against dextran sulfate sodium-induced acute colitis. Biomed Res Int 2014, 675786 (2014)

    • Search Google Scholar
    • Export Citation
  • 146.

    Laharie D , Asencio C, Asselineau J, Bulois P, Bourreille A, Moreau J, Bonjean P, Lamarque D, Pariente A, Soulé JC, Charachon A, Coffin B, Perez P, Megraud F, Zerbib F: Association between entero-hepatic Helicobacter species and Crohn’s disease: a prospective cross-sectional study. Aliment Pharmacol Ther 30, 283293 (2009)

    • Search Google Scholar
    • Export Citation
  • 147.

    Sonnenberg A , Genta RM: Low prevalence of Helicobacter pylori infection among patients with inflammatory bowel disease. Aliment Pharmacol Ther 35, 469476 (2012)

    • Search Google Scholar
    • Export Citation
  • 148.

    Thomson JM , Hansen R, Berry SH, Hope ME, Murray GI, Mukhopadhya I, McLean MH, Shen Z, Fox JG, El-Omar E, Hold, GL: Enterohepatic Helicobacter in ulcerative colitis: potential pathogenic entities? PLoS One 6, e17184 (2011)

    • Search Google Scholar
    • Export Citation
  • 149.

    Hulten K , El-Zimaity HM, Karttunen TJ, Almashhrawi A, Schwartz MR, Graham DY, El-Zaatari FA: Detection of Mycobacterium avium subspecies paratuberculosis in Crohn’s diseased tissues by in situ hybridization. Am J Gastroenterol 96, 15291535 (2001)

    • Search Google Scholar
    • Export Citation
  • 150.

    Sechi LA , Scanu AM, Molicotti P, Cannas S, Mura M, Dettori G, Fadda G, Zanetti S: Detection and Isolation of Mycobacterium avium subspecies paratuberculosis from intestinal mucosal biopsies of patients with and without Crohn’s disease in Sardinia. Am J Gastroenterol 100, 15291536 (2005)

    • Search Google Scholar
    • Export Citation
  • 151.

    Autschbach F , Eisold S, Hinz U, Zinser S, Linnebacher M, Giese T, Löffler T, Büchler MW, Schmidt J: High prevalence of Mycobacterium avium subspecies paratuberculosis IS900 DNA in gut tissues from individuals with Crohn’s disease. Gut 54, 944949 (2005)

    • Search Google Scholar
    • Export Citation
  • 152.

    Frank DN , St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR: Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104, 1378013785 (2007)

    • Search Google Scholar
    • Export Citation
  • 153.

    Sartor RB : Does Mycobacterium avium subspecies paratuberculosis cause Crohn’s disease? Gut 54, 896898 (2005)

  • 154.

    Selby W , Pavli P, Crotty B, Florin T, Radford-Smith G, Gibson P, Mitchell B, Connell W, Read R, Merrett M, Ee H, Hetzel D: Two-year combination antibiotic therapy with clarithromycin, rifabutin, and clofazimine for Crohn’s disease. Gastroenterol 132, 23132319 (2007)

    • Search Google Scholar
    • Export Citation
  • 155.

    Gradel KO , Nielsen HL, Schønheyder HC, Ejlertsen T, Kristensen B, Nielsen H: Increased short-and long-term risk of inflammatory bowel disease after Salmonella or Campylobacter gastroenteritis. Gastroenterol 137, 495501 (2009)

    • Search Google Scholar
    • Export Citation
  • 156.

    Stecher B , Macpherson AJ, Hapfelmeier S, Kremer M, Stallmach T, Hardt W-D: Comparison of Salmonella enterica serovar typhimurium colitis in germfree mice and mice pretreated with streptomycin. Infect Immun 73, 32283241 (2005)

    • Search Google Scholar
    • Export Citation
  • 157.

    Rashid T , Ebringer A, Tiwana H, Fielder M: Role of Klebsiella and collagens in Crohn’s disease: a new prospect in the use of low-starch diet. Eur J Gastroenterol Hepatol 21, 843849 (2009)

    • Search Google Scholar
    • Export Citation
  • 158.

    Tazume S , Umehara K, Leung WC, Ando K, Hata J, Hashimoto K: Concurrent murine cytomegalovirus and Klebsiella pneumoniae infections in germfree mice. Tokai J Exp Clin Med 15, 8792 (1990)

    • Search Google Scholar
    • Export Citation
  • 159.

    Wang Z-K , Yang Y-S, Chen Y, Yuan J, Sun G, Peng L-H: Intestinal microbiota pathogenesis and faecal microbiota transplantation for inflammatory bowel disease. World J Gastroenterol 20, 1480514820 (2014)

    • Search Google Scholar
    • Export Citation
  • 160.

    Saebo A , Vik E, Lange OJ, Matuszkiewicz L: Inflammatory bowel disease associated with Yersinia enterocolitica O:3 infection. Eur J Intern Med 16, 176182 (2005)

    • Search Google Scholar
    • Export Citation
  • 161.

    Ohkusa T , Okayasu I, Ogihara T, Morita K, Ogawa M, Sato N: Induction of experimental ulcerative colitis by Fusobacterium varium isolated from colonic mucosa of patients with ulcerative colitis. Gut 52, 7983 (2003)

    • Search Google Scholar
    • Export Citation
  • 162.

    Blais Lecours P, Marsolais D, Cormier Y, Berberi M, Haché C, Bourdages R, Duchaine C: Increased prevalence of Methanosphaera stadtmanae in inflammatory bowel diseases. PLoS One 9, e87734 (2014)

    • Search Google Scholar
    • Export Citation
  • 163.

    Chamaillard M , Cesaro A, Lober PE, Hober D: Decoding norovirus infection in Crohn’s disease. Inflamm Bowel Dis 20, 767770 (2014)

  • 164.

    Hansen R , Berry SH, Mukhopadhya I, Thomson JM, Saunders KA, Nicholl CE, Bisset WM, Loganathan S, Mahdi G, Kastner-Cole D, Barclay AR, Bishop J, Flynn DM, McGrogan P, Russell RK, El-Omar EM, Hold GL: The microaerophilic microbiota of de-novo paediatric inflammatory bowel disease: the BISCUIT study. PLoS One 8, e58825 (2013)

    • Search Google Scholar
    • Export Citation
  • 165.

    Man SM , Zhang L, Day AS, Leach ST, Lemberg DA, Mitchell H: Campylobacter concisus and other Campylobacter species in children with newly diagnosed Crohn’s disease. Inflamm Bowel Dis 16, 10081016 (2010)

    • Search Google Scholar
    • Export Citation
  • 166.

    Kernbauer E , Ding Y, Cadwell K: An enteric virus can replace the beneficial function of commensal bacteria. Nature 516, 9498 (2014)

  • 167.

    Basic M , Keubler LM, Buettner M, Achard M, Breves G, Schröder B, Smoczek A, Jörns A, Wedekind D, Zschemisch NH, Günther C, Neumann D, Lienenklaus S, Weiss S, Hornef MW, Mähler M, Bleich A: Norovirus triggered microbiota-driven mucosal inflammation in interleukin 10-deficient mice. Inflamm Bowel Dis 20, 431443 (2014)

    • Search Google Scholar
    • Export Citation
  • 168.

    Yrios JW , Balish E: Pathogenesis of Campylobacter spp. in athymic and euthymic germfree mice. Infect Immun 53, 384392 (1986)

  • 169.

    Bereswill S , Fischer A, Plickert R, Haag LM, Otto B, Kühl AA, Dashti JI, Zautner AE, Munoz M, Loddenkemper C, Groß U, Göbel UB, Heimesaat MM: Novel murine infection models provide deep insights into the “Ménage à Trois” of Campylobacter jejuni, microbiota and host innate immunity. PLoS One 6, e20953 (2011)

    • Search Google Scholar
    • Export Citation
  • 170.

    Ryan KJ , Ray CG (2004): Sherris Medical Microbiology (4th ed.): An introduction to Infectious Diseases. McGraw Hill, Medical Publishing Division, New York–Chicago–San Francisco–Lisbon–Madrid–Mexico City–Milan–New Delhi–San Juan–Seoul–Singapore–Sydney–Toronto, pp. 373385

    • Search Google Scholar
    • Export Citation
  • 171.

    Gorbach SL , Falagas M (2001): The 5 minute infectious diseases consult (1st ed.). Lippincott Williams & Wilkins

  • 172.

    Kist M (1985): The historical background of Campylobacter infection: new aspects. In: Proceedings of the 3rd International Workshop on Campylobacter Infections, Ottawa, ed Pearson AD, Public Health Laboratory Service, London, pp. 2327

    • Search Google Scholar
    • Export Citation
  • 173.

    Altekruse SF , Stern NJ, Fields PI, Swerdlow DL: Campylobacter jejuni–an emerging foodborne pathogen. Emerg Infect Dis 5, 2835 (1999)

  • 174.

    Tauxe RV (1992): Epidemiology of Campylobacter jejuni infections in the United States and other industrial nations. In: Campylobacter jejuni: current and future trends, eds Nachamkin I, Blaser MJ, Tompkins LS, American Society for Microbiology, Washington, pp. 912

    • Search Google Scholar
    • Export Citation
  • 175.

    Backert S , Tegtmeyer N, Ó’Crónín T, Böhm M, Heimesaat MM (2016): Human Campylobacteriosis. In: Campylobacter–Features, Detection, and Prevention of Foodborne Disease, ed Klein G, Elsevier, London, pp. 116.

    • Search Google Scholar
    • Export Citation
  • 176.

    Joyce E , Chan K, Salama N, Falkow S: Redefining bacterial populations: a post-genomic reformation. Nat Rev Genet 3, 462473 (2002)

  • 177.

    Whittam T , Bumbaugh A: Inferences from whole-genome sequences of bacterial pathogens. Curr Opin Genet Dev 12, 719725 (2002)

  • 178.

    Hofreuter D , Novik V, Galán JE: Metabolic diversity in Campylobacter jejuni enhances specific tissue colonization. Cell Host Microbe 13, 425433 (2008)

    • Search Google Scholar
    • Export Citation
  • 179.

    Hofreuter D : Defining the metabolic requirements for the growth and colonization capacity of Campylobacter jejuni. Front Cell Infect Microbiol 4, 137 (2014)

    • Search Google Scholar
    • Export Citation
  • 180.

    Hofreuter D , Tsai J, Watson RO, Novik V, Altman B, Benitez M, Clark C, Perbost C, Jarvie T, Du L, Galán JE: Unique features of a highly pathogenic Campylobacter jejuni strain. Infect Immun 74, 46944707 (2006)

    • Search Google Scholar
    • Export Citation
  • 181.

    Muraoka WT , Zhang Q: Phenotypic and genotypic evidence for L-fucose utilization by Campylobacter jejuni. J Bacteriol 193, 10651075 (2011)

    • Search Google Scholar
    • Export Citation
  • 182.

    Stahl M , Friis LM, Nothaft H, Liu X, Li J, Szymanski CM, Stintzi A: L-fucose utilization provides Campylobacter jejuni with a competitive advantage. Proc Natl Acad Sci USA 108, 71947199 (2011)

    • Search Google Scholar
    • Export Citation
  • 183.

    Day CJ , Hartley-Tassell LE, Shewell LK, King RM, Tram G, Day SK, Semchenko EA, Korolik V: Variation of chemo sensory receptor content of Campylobacter jejuni strains and modulation of receptor gene expression under different in vivo and in vitro growth conditions. BMC Micro biol 12, 128 (2012)

    • Search Google Scholar
    • Export Citation
  • 184.

    Rahman H , King RM, Shewell LK, Semchenko EA, Hartley-Tassell LE, Wilson JC, Day CJ, Korolik V: Characterisation of a multi-ligand binding chemoreceptor CcmL (Tlp3) of Campylobacter jejuni. PLoS Pathog 10, e1003822 (2014)