View More View Less
  • 1 University of New Haven, West Haven, CT 06516, USA
Open access

Borrelia burgdorferi, the causative agent of Lyme disease, is capable of forming biofilm in vivo and in vitro, a structure well known for its resistance to antimicrobial agents. For the formation of biofilm, signaling processes are required to communicate with the surrounding environment such as it was shown for the RpoN—RpoS alternative sigma factor and for the LuxS quorum-sensing pathways. Therefore, in this study, the wild-type B. burgdorferi and different mutant strains lacking RpoN, RpoS, and LuxS genes were studied for their growth characteristic and development of biofilm structures and markers as well as for their antibiotic sensitivity. Our results showed that all three mutants formed small, loosely formed aggregates, which expressed previously identified Borrelia biofilm markers such as alginate, extracellular DNA, and calcium. All three mutants had significantly different sensitivity to doxycyline in the early log phase spirochete cultures; however, in the biofilm rich stationary cultures, only LuxS mutant showed increased sensitivity to doxycyline compared to the wild-type strain. Our findings indicate that all three mutants have some effect on Borrelia biofilm, but the most dramatic effect was found with LuxS mutant, suggesting that the quorum-sensing pathway plays an important role of Borrelia biofilm formation and antibiotic sensitivity.

  • 1.

    Barbour AG , Hayes SF: Biology of Borrelia species. Microbiol Rev 50, 381400 (1986)

  • 2.

    Mead PS : Epidemiology of Lyme disease. Infect Dis Clin North Am 29, 187210 (2015)

  • 3.

    Sapi, E , Kaur, N, Anyanwu, S, Datar, A, Patel S, Rossi JM, Stricker RB: Evaluation of in vitro antibiotic susceptibility of different morphological forms of Borrelia burgdorferi. Infect Drug Resist 4, 97113 (2011)

    • Search Google Scholar
    • Export Citation
  • 4.

    Feng J , Wang T, Shi W, Zhang S, Sullivan D, Auwaerter PG, Zhang Y: Identification of novel activity against Borrelia burgdorferi persisters using an FDA approved drug library. Emerg Microbes Infect 3, 18 (2014)

    • Search Google Scholar
    • Export Citation
  • 5.

    Feng J , Auwaerter PG, Zhang Y: Drug combinations against Borrelia burgdorferi persisters in vitro: eradication achieved by using daptomycin, cefoperazone and doxycycline. PLoS One 10, 115 (2015)

    • Search Google Scholar
    • Export Citation
  • 6.

    Feng J , Weitner M, Shi W, Zhang S, Zhang Y: Eradication of biofilm-like microcolony structures of Borrelia burgdorferi by daunomycin and daptomycin but not mitomycin C in combination with doxycycline and cefuroxime. Frontiers in Microbiol 7, 62 (2016) doi:10.3389/fmicb.2016.00062

    • Search Google Scholar
    • Export Citation
  • 7.

    Liegner KB , Shapiro JR, Ramsay D, Halperin AJ, Hogrefe W, Kong L: Recurrent erythema migrans despite extended antibiotic treatment with minocycline in a patient with persisting Borrelia burgdorferi infection. J Am Acad Dermatol 28, 312314 (1993)

    • Search Google Scholar
    • Export Citation
  • 8.

    Dumler JS : Molecular diagnosis of Lyme disease: review and meta-analysis. Mol Diagn 6, 111 (2001)

  • 9.

    Steere AC , Angelis, SM: Therapy for Lyme arthritis: strategies for the treatment of antibiotic-refractory arthritis. Arthritis Rheum 54, 30793086. (2006)

    • Search Google Scholar
    • Export Citation
  • 10.

    Stricker RB , Johnson L. Lyme disease: the next decade. Infect Drug Resist 4, 19 (2011) doi:10.2147/IDR.S15653

  • 11.

    Klempner MS , Baker PJ, Shapiro ED, Marques A, Dattwyler RJ, Halperin JJ, Wormser GP: Treatment trials for postlyme disease symptoms revisited. Am J Med 126, 665669 (2013)

    • Search Google Scholar
    • Export Citation
  • 12.

    Berndtson K : Review of evidence for immune evasion and persistent infection in Lyme disease. Int J Gen Med 6, 291306 (2013)

  • 13.

    Brorson Ø , Brorson S-H, Scythes J, MacAllister J, Wier A, Margulis L: Destruction of spirochete Borrelia burgdorferi round-body propagules (RBs) by the antibiotic tigecycline. Proc Natl Acad Sci 106, 1865618661 (2009)

    • Search Google Scholar
    • Export Citation
  • 14.

    Straubinger RK , Summers, BA, Chang YF, Appel MJ: Persistence of Borrelia burgdorferi in experimentally infected dogs after antibiotic treatment. J Clin Microbiol 35, 111116 (1997)

    • Search Google Scholar
    • Export Citation
  • 15.

    Hodzic E , Feng S, Holden K, Freet KJ, Barthold SW: Persistence of Borrelia burgdorferi following antibiotic treatment in mice. Antimicrob Agents Chemother 52, 17281736 (2008)

    • Search Google Scholar
    • Export Citation
  • 16.

    Barthold SW , Hodzic E, Imai DM, Feng S, Yang S, Luft BJ: Ineffectiveness of tigecycline against persistent Borrelia burgdorferi. Antimicrob Agents Chemother 54, 643651 (2010)

    • Search Google Scholar
    • Export Citation
  • 17.

    Embers ME , Barthold SW, Borda JT, Bowers L, Doyle L, Hodzic E, Jacobs MB, Hasenkampf NR, Martin DS, Narasimhan S, Phillippi-Falkenstein KM, Purcell JE, Ratterree MS, Philipp M: Persistence of Borrelia burgdorferi in rhesus macaques following antibiotic treatment of disseminated infection. PLoS One 7, e29914 (2012)

    • Search Google Scholar
    • Export Citation
  • 18.

    Hodzic E , Imai D, Feng S, Barthold SW: Resurgence of persisting non-cultivable Borrelia burgdorferi following antibiotic treatment in mice. PLoS One 23, 111 (2014)

    • Search Google Scholar
    • Export Citation
  • 19.

    Kurtti TJ , Munderloh, UG, Johnson RC, Ahlstrand GG: Colony formation and morphology in Borrelia burgdorferi. J Clin Microbiol 25, 20542058 (1987)

    • Search Google Scholar
    • Export Citation
  • 20.

    Hampp, EG : Further studies on the significance of spirochetal granules. J Bacteriol 62, 347349 (1951)

  • 21.

    Mursic VP , Wanner G, Reinhardt S, Wilske B, Busch U, Marget W: Formation and cultivation of Borrelia burgdorferi spheroplast-L-form variants. Infection 24, 218226 (1996)

    • Search Google Scholar
    • Export Citation
  • 22.

    MacDonald AB : Spirochetal cyst forms in neurodegenerative disorders, … hiding in plain sight. Med Hypotheses 67, 819832 (2006)

  • 23.

    MacDonald AB : Borrelia burgdorferi tissue morphologies and imaging methodologies. Eur J Clin Microbiol Infect Dis 32, 10771082 doi: 10.1007/s10096-013-1853-5 (2013)

    • Search Google Scholar
    • Export Citation
  • 24.

    Alban PS , Johnson PW, Nelson DR: Serum-starvationinduced changes in protein synthesis and morphology of Borrelia burgdorferi. Microbiology 146, 119127 (2000)

    • Search Google Scholar
    • Export Citation
  • 25.

    Gruntar I , Malovrh T, Murgia R, Cinco M: Conversion of Borrelia garinii cystic forms to motile spirochetes in vivo. APMIS 109, 383388 (2001)

    • Search Google Scholar
    • Export Citation
  • 26.

    Brorson O , Brorson SH. In vitro conversion of Borrelia burgdorferi to cystic forms in spinal fluid, and transformation to mobile spirochetes by incubation in BSK-H medium. Infection 26, 144150 (1998)

    • Search Google Scholar
    • Export Citation
  • 27.

    Murgia R , Cinco M: Induction of cystic forms by different stress conditions in Borrelia burgdorferi. APMIS 112, 5762 (2004)

  • 28.

    Brorson Ø , Brorson SH: An in vitro study of the susceptibility of mobile and cystic forms of Borrelia burgdorferi to tinidazole. Int Microbiol 7, 13942 (2004)

    • Search Google Scholar
    • Export Citation
  • 29.

    Miklossy J , Kasas S, Zurn AD, McCall S, Yu S, McGeer PL: Persisting atypical and cystic forms of Borrelia burgdorferi and local inflammation in Lyme neuroborreliosis. J Neuroinflammation 5, 118 (2008)

    • Search Google Scholar
    • Export Citation
  • 30.

    Kersten A , Poitschek C, Rauch S, Aberer E: Effects of penicillin, ceftriaxone, and doxycycline on morphology of Borrelia burgdorferi. Antimicrob Agents Chemother 39, 11271133 (1995)

    • Search Google Scholar
    • Export Citation
  • 31.

    Brorson Ø , Brorson S-H, Scythes J, MacAllister J, Wier A, Margulis L: Destruction of spirochete Borrelia burgdorferi round-body propagules (RBs) by the antibiotic tigecycline. Proc Natl Acad Sci 106, 1865618661 (2009)

    • Search Google Scholar
    • Export Citation
  • 32.

    Sapi E , Bastian SL, Mpoy CM, Scott S, Rattelle A, Pabbati N, Poruri A, Burugu D, Theophilus PA, Pham TV, Datar A, Dhaliwal NK, MacDonald A, Rossi MJ, Sinha SK, Luecke D: Characterization of biofilm formation by Borrelia burgdorferi in vitro. PLoS One 7, e48277 (2012)

    • Search Google Scholar
    • Export Citation
  • 33.

    Timmaraju VA , Theophilus PAS, Balasubramanian K, Shakih S, Luecke DF, Sapi E: Biofilm formation by Borrelia sensu lato. FEMS Microbiol Lett 362, (2015) doi: 10.1093/femsle/fnv120.

    • Search Google Scholar
    • Export Citation
  • 34.

    Sapi E , Balasubramanian K, Poruri A, Maghsoudlou JS, Theophilus, PAS, Socarras KM, Timmaraju AV, Filush KR, Gupta K, Shaikh, S, Luecke DF, MacDonald A, Zelger B: Evidence of in vivo existence of borrelia biofilm in borrelial lymphocytomas. Eur J Microbio Immunol 6, (2016) doi: http://dx.doi.org/10.1556/1886.2015.00049

    • Search Google Scholar
    • Export Citation
  • 35.

    Theophilus, PAS , Victoria MJ, Socarras KM, Filush KR, Gupta K, Luecke DF, Sapi E: Effectiveness of Stevia rebaudiana whole leaf extract against the various morphological forms of Borrelia burgdorferiin vitro. Eur J of Microbiol and Immunol 5, 268280 (2015) doi: 10.1556/1886.2015.00031

    • Search Google Scholar
    • Export Citation
  • 36.

    Costerton, JW , Stewart, PS, Greenberg, EP: Bacterial biofilms: a common cause of persistent infections. Science 284, 13181322 (1999)

  • 37.

    Donlan RM , Costerton JW: Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15, 16793 (2002)

  • 38.

    Flemming, H-C , Wingender, J: The biofilm matrix. Nat Rev Micro 8, 623633 (2010)

  • 39.

    Song, T , Duperthuy, M, Wai, SN: Sub-optimal treatment of bacterial biofilms. Antibiotics 5, 23 (2016)

  • 40.

    Kazmierczak MJ , Wiedmann M, Boor KJ: Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev 69, 527543 (2005) doi:10.1128/MMBR.69.4.527-543.2005.

    • Search Google Scholar
    • Export Citation
  • 41.

    Hübner A , Yang X, Nolen DM, Popova TG, Cabello FC, Norgard MV: Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN–RpoS regulatory pathway. Proc Natl Acad of Sci USA 98, 1272412729 (2001) doi: 10.1073/pnas.231442498.

    • Search Google Scholar
    • Export Citation
  • 42.

    Caimano, MJ , Eggers CH, Gonzalez CA, Radolf, JD: Alternate sigma factor RpoS is required for the in vivospecific repression of Borrelia burgdorferi plasmid lp54-borne ospA and lp6.6 genes. J Bacteriol 187, 78457852 (2005)

    • Search Google Scholar
    • Export Citation
  • 43.

    Smith AH , Blevins JS, Bachlani GN, Yang XF, Norgard MV: Evidence that RpoS (sS) in Borrelia burgdorferi is controlled directly by RpoN (s54/sN). J Bacteriol 189, 21392144 (2007) doi:10.1128/JB.01653-06.

    • Search Google Scholar
    • Export Citation
  • 44.

    Ouyang Z , Blevins GS, Norgard MV: Transcriptional interplay among the regulators Rrp2, RpoN and RpoS in Borrelia burgdorferi. Microbiol 154, 26412658 (2008) doi: 10.1099/mic.0.2008/019992-0

    • Search Google Scholar
    • Export Citation
  • 45.

    Ouyang Z , Narasimhan S, Neelakanta G, Kumar M, Pal U, Fikrig E, Norgard MV: Activation of the RpoN–RpoS regulatory pathway during the enzootic life cycle of Borrelia burgdorferi. BMC Microbiol 12, 44 (2012) doi: 10.1186/1471-2180-12-44.

    • Search Google Scholar
    • Export Citation
  • 46.

    Dunham-Ems SM , Caimano MJ, Eggers CH, Radolf JD: Borrelia burgdorferi requires the alternative sigma factor RpoS for dissemination within the vector during tick-tomammal transmission. PLoS Pathog 8(2), e1002532 (2012) doi: 10.1371/journal.ppat.1002532

    • Search Google Scholar
    • Export Citation
  • 47.

    Waters CM , Bassler BL: Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21, 319346 (2005)

  • 48.

    Bassler, BL : How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Op in Microbiol 2, 582587 (1999)

    • Search Google Scholar
    • Export Citation
  • 49.

    Schauder, S , Shokat K, Surette MG, Bassler BL: The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41, 463476 (2001)

    • Search Google Scholar
    • Export Citation
  • 50.

    De Keersmaecker, SCJ , Sonck K, Vanderleyden J: Let LuxS speak up in AI-2 signaling. Trends in Microbiol 14, 114119 (2006)

  • 51.

    Stevenson, B , Babb K: LuxS-mediated quorum sensing in Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun 70, 40994105 (2002)

    • Search Google Scholar
    • Export Citation
  • 52.

    Babb K , von Lackum, K, Wattier RL, Riley SP, Stevenson B: Synthesis of autoinducer 2 by the Lyme disease spirochete, Borrelia burgdorferi. J Bacteriol 187, 30793087 (2005)

    • Search Google Scholar
    • Export Citation
  • 53.

    Hübner A , Revel AT, Nolen DM, Hagman KE, Norgard MV: Expression of a luxS gene is not required for Borrelia burgdorferi infection of mice via needle inoculation. Infect Immun 71(5), 28922896 (2003) doi:10.1128/IAI.71.5.2892-2896.2003.

    • Search Google Scholar
    • Export Citation
  • 54.

    McNab R , Ford SK, El-Sabaeny A, Barbieri B, Cook GS, Lamont RJ: LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol 185, 274284 (2003)

    • Search Google Scholar
    • Export Citation
  • 55.

    Yoshida A , Ansai T, Takehara T, Kuramitsu HK: LuxSbased signaling affects Streptococcus mutans biofilm formation. Appl Environ Microbiol 71, 23722380 (2005)

    • Search Google Scholar
    • Export Citation
  • 56.

    Colvin KM , Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, Howell PL, Wozniak DJ, Parsek MR: The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol 14(8), (2012) doi:10.1111/j.1462-2920.2011. 02657.x.

    • Search Google Scholar
    • Export Citation
  • 57.

    Belik AS , Tarasova NN, Khmel IA: Regulation of biofilm formation in Escherichia coli K12: Effect of mutations in the genes HNS, STRA, LON, and RPON. Mol Gen, Microbiol Virol 23, 159 (2008)

    • Search Google Scholar
    • Export Citation
  • 58.

    Vijayalakshmi S. Iyer and Lynn E. Hancock: Deletion of σ54 (rpoN) alters the rate of autolysis and biofilm formation in Enterococcus faecalis. J Bacteriol 94, 368375 (2012) doi:10.1128/JB.06046-11

    • Search Google Scholar
    • Export Citation
  • 59.

    Adams JL , Mclean RJC: Impact of rpoS deletion on Escherichia coli biofilms. Appl Environ Microbiol 65, 42854287 (1999)

  • 60.

    Irie Y , Starkey M, Edwards AN, Wozniak DJ, Romeo T, Parsek MR: Pseudomonas aeruginosa biofilm matrix poly saccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Mol Microbiol 78, 158172 (2010) doi: 10.1111/j.1365-2958.2010.07320.x.

    • Search Google Scholar
    • Export Citation
  • 61.

    Wen ZT , Burne RA: Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. Appl Environ Microbiol 68, 11961203 (2002)

    • Search Google Scholar
    • Export Citation
  • 62.

    Merritt J , Qi F, Goodman SD, Anderson MH, Shi W: Mutation of LuxS affects biofilm formation in Streptococcus mutants. Infect Immun 71, 19721979 (2003)

    • Search Google Scholar
    • Export Citation
  • 63.

    Bodor AM , Jansch L, Wissing JWagner-Dobler,: The luxS mutation causes loosely-bound biofilms in Shewanella oneidensis. BMC Res Notes 4, 180 (2011) doi: 10.1186/1756-0500-4-180

    • Search Google Scholar
    • Export Citation
  • 64.

    Ahmed NAAM , Peterson FC, Scheie AA: AI-2 quorum sensing affects antibiotic susceptibility in Streptococcus anginosus. J Antimicron Ther 60, 4953 (2007) doi: 10.1093/jac/dkm12

    • Search Google Scholar
    • Export Citation
  • 65.

    Davies DG , Parsek MR, Pearson JP, Iglewski BH, Costerton, JW, Greenberg EP: The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295298 (1998)

    • Search Google Scholar
    • Export Citation
  • 66.

    Caimano MJ , Dunham-Ems S, Allard AM, Cassera MB, Kenedy M, Radolf JD: Cyclic di-GMP modulates gene expression in Lyme disease spirochetes at the tick-mammal interface to promote spirochete survival during the blood meal and tick-to-mammal transmission. Infect Immun 83, 30433060 (2015) doi:10.1128/IAI.00315-15.

    • Search Google Scholar
    • Export Citation
  • 67.

    Liveris D , Mulay V, Schwartz I: Functional properties of Borrelia burgdorferi recA. J Bacteriol 186, 22752280 (2004) doi:10.1128/JB.186.8.2275-2280.2004.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 114 99 3
PDF Downloads 79 67 3