View More View Less
  • 1 Charité — University Medicine Berlin, Berlin, Germany
Open access

Secondary abiotic mice generated by broad-spectrum antibiotic treatment provide a valuable tool for association studies with microbiota derived from different vertebrate hosts. We here generated human microbiota-associated (hma) mice by human fecal microbiota transplantation of secondary abiotic mice and performed a comprehensive survey of the intestinal microbiota dynamics in offspring of hma mice over 18 weeks following weaning as compared to their mothers applying both cultural and molecular methods. Mice were maintained under standard hygienic conditions with open cages, handled under aseptic conditions, and fed autoclaved chow and water. Within 1 week post weaning, fecal loads of commensal enterobacteria and enterococci had decreased, whereas obligate anaerobic bacteria such as Bacteroides/Prevotella species and clostridia were stably colonizing the intestines of hma offspring at high loads. Lactobacilli numbers were successively increasing until 18 weeks post weaning in both hma offspring and mothers, whereas by then, bifidobacteria were virtually undetectable in the former only. Interestingly, fecal lactobacilli and bifidobacteria were higher in mothers as compared to their offspring at 5 and 18 weeks post weaning. We conclude that the intestinal microbiota composition changes in offspring of hma mice, but also their mothers over time particularly affecting aerobic and microaerobic species.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Supplementary Materials

  • 1.

    Nguyen TL , Vieira-Silva S, Liston A, Raes J: How informative is the mouse for human gut microbiota research? Dis Model Mech 8, 116 (2015)

    • Search Google Scholar
    • Export Citation
  • 2.

    Turnbaugh PJ , Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI: The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1, 6ra14 (2009)

    • Search Google Scholar
    • Export Citation
  • 3.

    Yu Y , Lu L, Sun J, Petrof EO, Claud EC: Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model. Am J Physiol Gastrointest Liver Physiol 311, G52132 (2016)

    • Search Google Scholar
    • Export Citation
  • 4.

    Natividad JM , Pinto-Sanchez MI, Galipeau HJ, Jury J, Jordana M, Reinisch W, et al.: Ecobiotherapy rich in firmicutes decreases susceptibility to colitis in a humanized gnotobiotic mouse model. Inflamm Bowel Dis 21, 18831893 (2015)

    • Search Google Scholar
    • Export Citation
  • 5.

    Marcobal A , Kashyap PC, Nelson TA, Aronov PA, Donia MS, Spormann A, et al.: A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J 7, 19331943 (2013)

    • Search Google Scholar
    • Export Citation
  • 6.

    Turnbaugh PJ , Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI: An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 10271031 (2006)

    • Search Google Scholar
    • Export Citation
  • 7.

    Seedorf H , Griffin NW, Ridaura VK, Reyes A, Cheng J, Rey FE, et al.: Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 159, 253266 (2014)

    • Search Google Scholar
    • Export Citation
  • 8.

    Chung H , Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et al.: Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149, 15781593 (2012)

    • Search Google Scholar
    • Export Citation
  • 9.

    Laukens D , Brinkman BM, Raes J, De Vos M, Vandenabeele P: Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol Rev 40, 117132 (2016)

    • Search Google Scholar
    • Export Citation
  • 10.

    Fiebiger U , Bereswill S, Heimesaat MM: Dissecting the interplay between intestinal microbiota and host immunity in health and disease: lessons learned from germfree and gnotobiotic animal models. Eur J Microbiol Immunol (Bp) 6, 253271 (2016)

    • Search Google Scholar
    • Export Citation
  • 11.

    Hazebrouck S , Przybylski-Nicaise L, Ah-Leung S, Adel-Patient K, Corthier G, Wal JM, et al.: Allergic sensitization to bovine beta-lactoglobulin: comparison between germfree and conventional BALB/c mice. Int Arch Allergy Immunol 148, 6572 (2009)

    • Search Google Scholar
    • Export Citation
  • 12.

    Taurog JD , Richardson JA, Croft JT, Simmons WA, Zhou M, Fernandez-Sueiro JL, et al.: The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 180, 23592364 (1994)

    • Search Google Scholar
    • Export Citation
  • 13.

    Dianda L , Hanby AM, Wright NA, Sebesteny A, Hayday AC, Owen MJ: T cell receptor-alpha beta-deficient mice fail to develop colitis in the absence of a microbial environment. Am J Pathol 150, 9197 (1997)

    • Search Google Scholar
    • Export Citation
  • 14.

    Hansen AK , Hansen CH, Krych L, Nielsen DS: Impact of the gut microbiota on rodent models of human disease. World J Gastroenterol 20, 1772717736 (2014)

    • Search Google Scholar
    • Export Citation
  • 15.

    Heimesaat MM , Bereswill S, Fischer A, Fuchs D, Struck D, Niebergall J, et al.: Gram-negative bacteria aggravate murine small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii. J Immunol 177, 87858795 (2006)

    • Search Google Scholar
    • Export Citation
  • 16.

    Bereswill S , Fischer A, Plickert R, Haag LM, Otto B, Kuhl AA, et al.: Novel murine infection models provide deep insights into the “menage a trois” of Campylobacter jejuni, microbiota and host innate immunity. PLoS One 6, e20953 (2011)

    • Search Google Scholar
    • Export Citation
  • 17.

    Heimesaat MM , Boelke S, Fischer A, Haag LM, Loddenkemper C, Kuhl AA, et al.: Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice. PLoS One 7, e40758 (2012)

    • Search Google Scholar
    • Export Citation
  • 18.

    Masanta WO , Heimesaat MM, Bereswill S, Tareen AM, Lugert R, Gross U, et al.: Modification of intestinal microbiota and its consequences for innate immune response in the pathogenesis of campylobacteriosis. Clin Dev Immunol 2013, 526860 (2013)

    • Search Google Scholar
    • Export Citation
  • 19.

    Alter T , Bereswill S, Glunder G, Haag LM, Hanel I, Heimesaat MM, et al.: [Campylobacteriosis of man: livestock as reservoir for Campylobacter species]. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 54, 728734 (2011)

    • Search Google Scholar
    • Export Citation
  • 20.

    Heimesaat MM , Bereswill S: Murine infection models for the investigation of Campylobacter jejuni–host interactions and pathogenicity. Berl Munch Tierarztl Wochenschr 128, 98103 (2015)

    • Search Google Scholar
    • Export Citation
  • 21.

    Kampmann C , Dicksved J, Engstrand L, Rautelin H: Composition of human faecal microbiota in resistance to Campylobacter infection. Clin Microbiol Infect 22, 61 e1–8 (2016)

    • Search Google Scholar
    • Export Citation
  • 22.

    Heimesaat MM , Fischer A, Jahn HK, Niebergall J, Freudenberg M, Blaut M, et al.: Exacerbation of murine ileitis by Toll-like receptor 4 mediated sensing of lipopolysaccharide from commensal Escherichia coli. Gut 56, 941948 (2007)

    • Search Google Scholar
    • Export Citation
  • 23.

    Heimesaat MM , Fischer A, Siegmund B, Kupz A, Niebergall J, Fuchs D, et al.: Shift towards pro-inflammatory intestinal bacteria aggravates acute murine colitis via Tolllike receptors 2 and 4. PLoS One 2, e662 (2007)

    • Search Google Scholar
    • Export Citation
  • 24.

    Bereswill S , Kuhl AA, Alutis M, Fischer A, Mohle L, Struck D, et al.: The impact of Toll-like-receptor-9 on intestinal microbiota composition and extra-intestinal sequelae in experimental Toxoplasma gondii induced ileitis. Gut Pathog 6, 19 (2014)

    • Search Google Scholar
    • Export Citation
  • 25.

    Heimesaat MM , Nogai A, Bereswill S, Plickert R, Fischer A, Loddenkemper C, et al.: MyD88/TLR9 mediated immunopathology and gut microbiota dynamics in a novel murine model of intestinal graft-versus-host disease. Gut 59, 10791087 (2010)

    • Search Google Scholar
    • Export Citation
  • 26.

    Rausch S , Held J, Fischer A, Heimesaat MM, Kuhl AA, Bereswill S, et al.: Small intestinal nematode infection of mice is associated with increased enterobacterial loads alongside the intestinal tract. PLoS One 8, e74026 (2013)

    • Search Google Scholar
    • Export Citation
  • 27.

    Thoene-Reineke C , Fischer A, Friese C, Briesemeister D, Gobel UB, Kammertoens T, et al.: Composition of intestinal microbiota in immune-deficient mice kept in three different housing conditions. PLoS One 9, e113406 (2014)

    • Search Google Scholar
    • Export Citation
  • 28.

    Rodriguez JM , Murphy K, Stanton C, Ross RP, Kober OI, Juge N, et al.: The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26, 26050 (2015)

    • Search Google Scholar
    • Export Citation
  • 29.

    Hirayama K , Miyaji K, Kawamura S, Itoh K, Takahashi E, Mitsuoka T: Development of intestinal flora of humanflora-associated (HFA) mice in the intestine of their offspring. Exp Anim 44, 219222 (1995)

    • Search Google Scholar
    • Export Citation
  • 30.

    Hirayama K : Ex-germfree mice harboring intestinal microbiota derived from other animal species as an experimental model for ecology and metabolism of intestinal bacteria. Exp Anim 48, 219227 (1999)

    • Search Google Scholar
    • Export Citation
  • 31.

    Hirayama K , Kawamura S, Mitsuoka T: Development and stability of human faecal flora in the intestine of ex-germfree mice. Microb Ecol Health Dis 4, 9599 (1991)

    • Search Google Scholar
    • Export Citation
  • 32.

    Collins J , Auchtung JM, Schaefer L, Eaton KA, Britton RA: Humanized microbiota mice as a model of recurrent Clostridium difficile disease. Microbiome 3, 35 (2015)

    • Search Google Scholar
    • Export Citation
  • 33.

    Bereswill S , Plickert R, Fischer A, Kuhl AA, Loddenkemper C, Batra A, et al. What you eat is what you get: Novel Campylobacter models in the quadrangle relationship between nutrition, obesity, microbiota and susceptibility to infection. Eur J Microbiol Immunol (Bp) 1, 237248 (2011)

    • Search Google Scholar
    • Export Citation