View More View Less
  • 1 BRAC University, Bangladesh
Open access

In view of the anticipated shortage of the traditional supplies of fossil fuels, there is a great deal of interest in the production of ethanol as an alternative biofuel in recent years. The main objective of this research work was to isolate and characterize stress tolerant, high potential ethanol producing yeast strains from various fruit peel. Two yeast isolates from pineapple (Pa) and orange (Or) have been isolated, characterized on the basis of morphological and physic-chemical characters and optimized on ethanol producing capability using sugarcane molasses as substrate. Ethanol production percentage was estimated by Conway method. Isolates were thermotolerant, pH tolerant, ethanol tolerant as well as osmotolerant. They were resistant to Chloramphenicol (30 μg/disc) and Nalidixic acid (30 μg/disc). The isolates showed no killer toxin activity against E. coli. The highest production capacity of the yeasts was found to be 7.39% and 5.02% for Pa and Or, respectively, at pH 5.0, 30 °C temperature in media with an initial reducing sugar concentration of 6.5% for Pa and 5.5% for Or (shaking). Addition of metal ions increased the rate of ethanol production highest to 10.61% by KH2PO4. This study revealed that indigenous yeast isolates could be used to benefit the fuel demand and industrial alcohol industries.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1.

    Jones AM , Ingledew WM: Fuel Alcohol production: appraisal of nitrogenous yeast foods for very high gravity wheat mash fermentation. Appl Environ Microbiol 60(3), 10481051 (1994)

    • Search Google Scholar
    • Export Citation
  • 2.

    Bai ZG , Dent DL, Olsson L, Schaepman ME: Proxy global assessment of land degradation. Soil Use Manage 24, 223234 (2008)

  • 3.

    Rolz C , de Leon R: Ethanol fermentation from sugarcane at different maturities. Ind Crops Prod 33(2), 333337 (2011)

  • 4.

    Hansen AC , Zhang Q, Lyne PWL: Ethanol diesel fuel blends –a review. Bioresour Technol 96, 277285 (2005)

  • 5.

    Wyman CE , Hinman ND: Ethanol, Fundamental of production from renewable feedstocks and use as transportation fuel. Appl Biochem Biotechnol 24–25, 735750 (1990)

    • Search Google Scholar
    • Export Citation
  • 6.

    Takeshige K , Ouchi K: Factors affecting the ethanol productivity of yeast in molasses. J Ferment Bioeng 79, 449452 (1995)

  • 7.

    Beuchat LR : Influence of water activity on growth metabolic activities and survival of yeasts and molds. J Food Prot 46, 135141 (1983)

    • Search Google Scholar
    • Export Citation
  • 8.

    Hahn-Haegerdal B , Larrson M, Mattiasson B: Shift in metabolism towards ethanol production in Saccharomyces cerevisiae using alterations of the physical-chemical microenvironment. Biotechnol Bioeng Symp 12, 199202 (1982)

    • Search Google Scholar
    • Export Citation
  • 9.

    Belitz HD , Grosch W, Schieberle P (2009): Food Chemistry, 4th edn., Springer

  • 10.

    Satyanarayana T , Kunze G (2009): Yeast Biotechnology: Diversity and Applications, Springer

  • 11.

    Echegaray O , Carvalho J, Fernandes A, Sato S, Aquarone E, Vitolo M: Fed batch culture of Saccharomyces cerevisiae in sugarcane blackstrap molasses: invertase activity of intact cells in ethanol fermentation. Biomass Bioenergy 19, 3950 (2000)

    • Search Google Scholar
    • Export Citation
  • 12.

    Sanchez OJ , Cardona CA: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99, 52705295 (2008)

    • Search Google Scholar
    • Export Citation
  • 13.

    Lodder J (1970): General classification of the yeasts. In: The Yeasts, A Taxonomic Study, 2nd edn., ed. Lodder J, North Holland, Amsterdam, pp. 133

    • Search Google Scholar
    • Export Citation
  • 14.

    Boekhout T , Kurtzman CP (1996): Principles and methods used in yeast classification, and overview of currently accepted genera. In: Non-conventional Yeasts in Biotechnology: A Handbook, ed. Wolf K, Springer Verlag, Berlin, Heidelberg, pp. 18

    • Search Google Scholar
    • Export Citation
  • 15.

    Kreger-Van Rij NJW (1984): The Yeasts: A Taxonomic Study. Elsevier Science Publishing Company, New York, p. 1082

  • 16.

    Nofemele Z , Shukla P, Trussler A, Permaul K, Singh S: Improvement of ethanol production from sugarcane molasses through enhanced nutrient supplementation using Saccharomyces cerevisiae. J Brew Distill 3(2), 2935 (2012). DOI: 10.5897/JBD12.003

    • Search Google Scholar
    • Export Citation
  • 17.

    Kurtzman CP , Fell JW (1997): The Yeasts: A Taxonomic Study, 4th edn., Elsevier Science Publishing Company, Amsterdam, p. 1055

  • 18.

    Mesa JJ , Infante JJ, Rebordinos L, Cantoral JM: Characterization of yeasts involved in the biological ageing of sherry wines. Lebensm–Wiss Technol 32, 114120 (1999)

    • Search Google Scholar
    • Export Citation
  • 19.

    Ortiz-Muñiz B , Carvajal-Zarrabal O, Torrestiana-Sanchez B, Aguilar-Uscanga MG: Kinetic study on ethanol production using Saccharomyces cerevisiae ITV-01 yeast isolated from sugar cane molasses. J Chem Technol Biotechnol 85(10), 13611367 (2010)

    • Search Google Scholar
    • Export Citation
  • 20.

    Lorenz MC , Cutler NS, Heitman J: Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol Biol Cell 11(1), 183199 (2000)

    • Search Google Scholar
    • Export Citation
  • 21.

    Warren P , Shadomy L (1991): Yeast Fermentation Broth Base with Carbohydrate and Durham Tube. In: Manual of Clinical Microbiology, 5th edn., Washington D.C.

    • Search Google Scholar
    • Export Citation
  • 22.

    Fakruddin M , Islam MA, Quayum MA, Ahmed MM, Chowdhury N: Characterization of Stress tolerant high potential ethanol producing yeast from agro-industrial waste. Am J BioSci 1(2), 2434 (2013). DOI: 10.11648/j.ajbio. 20130102.11

    • Search Google Scholar
    • Export Citation
  • 23.

    Osho A : Ethanol and sugar tolerance of wine yeasts isolated from fermenting cashew apple juice. Afr J Biotechnol 4(7), 660662 (2005)

    • Search Google Scholar
    • Export Citation
  • 24.

    Bauer AW , Kirby WMM, Sheris JC, Truck M: Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol 145, 225230 (1966)

    • Search Google Scholar
    • Export Citation
  • 25.

    Ortiz-Zamora O , Cortès-García R, Ramírez-Lepe M, Gómez-Rodríguez J, Aguilar-Uscanga MG: Isolation and selection of ethanol-resistant and osmotolerant yeasts from regional agricultural sources in Mexico. J Food Process Eng 32, 775786 (2009)

    • Search Google Scholar
    • Export Citation
  • 26.

    Soares GAM , Sato HH: Characterization of the Saccharomyces cerevisiae Y500-4L killer toxin. Braz J Microbiol 31, 291297 (2000)

  • 27.

    Periyasamy S , Venkatachalam S, Ramasamy S, Srinivasan V: Production of bio-ethanol from sugar molasses using Saccharomyces Cerevisiae. Mod Appl Sci 3(8), 3237 (2009)

    • Search Google Scholar
    • Export Citation
  • 28.

    Miller GL : Use of dinitrosalycylic acid reagent for determination of reducing sugar. Anal Chem 31, 426428 (1959)

  • 29.

    Sharif K : Conway Microdiffusion Analysis. Available at https://www.physicsforums.com/threads/conway-microdiffusion-analysis.255771/

  • 30.

    Palukurty MA , Telgana NK, Bora HSR, Mulampaka SN: Screening and optimization of metal ions to enhance ethanol production using statistical experimental designs. Afr J Microbiol Res 2, 8794 (2008)

    • Search Google Scholar
    • Export Citation
  • 31.

    Kurtzman CP , Fell JW (1998): Definition, classification and nomenclature of the yeasts. In: The Yeasts, A Taxonomic Study, 4th edn., eds. Kurtzman CP, Fell JW, Elsevier Science BV, Amsterdam, The Netherlands, pp. 35

    • Search Google Scholar
    • Export Citation
  • 32.

    Silva JB , Sauvageau D: Bacteriophages as antimicrobial agents against bacterial contaminants in yeast fermentation processes. Biotechnol Biofuels 7(123), (2014)

    • Search Google Scholar
    • Export Citation
  • 33.

    Panchal CJ , Meacher C, Van Oostrom J, Stewart GG: Phenotypic expression of Kluyveromyces lactis killer toxin against Saccharomyces spp. Appl Environ Microbiol 50(2), 257260 (1985)

    • Search Google Scholar
    • Export Citation
  • 34.

    Mahler HR , Johnson J: Specific effects of nalidixic acid on mitochondrial gene expression in Saccharomyces cerevisiae. Mol Gen Genet 176, 2531 (1979)

    • Search Google Scholar
    • Export Citation
  • 35.

    Rahman SS , Sarkar MKI, Islam MR, Hossain K, Nahar K, Roy CK, Uddin ME, Choudhury N: Isolation of yeasts from raisins and palm-juice and ethanol production in molasses medium. Indian J Sci Technol 9(12), (2016). DOI: 10.17485/ijst/2016/v9i12/85509

    • Search Google Scholar
    • Export Citation
  • 36.

    Khan AR , Malek MA, Choudhury N, Khan SI: Alcohol production from molasses and liquid sugar using some indigenous yeast isolates. Bangladesh J Microbiol 6(1), 3742 (1989)

    • Search Google Scholar
    • Export Citation
  • 37.

    Thammasittirong SN , Thirasaktana T, Thammasittirong A, Srisodsuk M: Improvement of ethanol production by ethanol-tolerant Saccharomyces cerevisiae UVNR56. SpringerPlus 2(583), (2013)

    • Search Google Scholar
    • Export Citation
  • 38.

    Zohri AA , Ragab WSM, Ali MMA: Ethanol production from Egyptian sugar cane molasses by six yeast strains using batch fermentation. J Basic Appl Mycol 5, 4349 (2014)

    • Search Google Scholar
    • Export Citation
  • 39.

    Deesuth O , Laopaiboon P, Jaisil P, Laopaiboon L: Optimization of nitrogen and metal ions supplementation for very high gravity bioethanol fermentation from sweet sorghum juice using an orthogonal array design. Energies 5, 31783197 (2012)

    • Search Google Scholar
    • Export Citation
  • 40.

    Ueno R , Urano N, Kimura S: Effect of temperature and cell density on ethanol fermentation by a thermotolerant aquatic yeast strain isolated from hot spring environment. Fish Sci 68, 571578 (2002)

    • Search Google Scholar
    • Export Citation
  • 41.

    Pellegrini L , Cardinali G, Martini A: Selection of Saccharomyces cerevisiae strains able to ferment at supraoptimal temperatures. Appl Microbiol Enzymol 49, 5565 (1999)

    • Search Google Scholar
    • Export Citation
  • 42.

    Sree NK , Sridhar M, Suresh K, Bharat IM, Rao LV: High alcohol production by repeated batch fermentation using immobilized osmotolerant S. cerevisiae. J Indust Microbiol Biotechnol 24, 222226 (2000)

    • Search Google Scholar
    • Export Citation
  • 43.

    Rahman SS , Hossain MM, Choudhury N: Effect of Various Parameters on the Growth and Ethanol Production by Yeasts Isolated from Natural Sources. Bangladesh Jo Microbiol 30(1–2), 49–54 (2013). DOI: 10.3329/bjm.v30i1-2.28453

    • Search Google Scholar
    • Export Citation
  • 44.

    Choudhary J , Singh S, Nain L: Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electron J Biotechnol 21, 8292 (2016)

    • Search Google Scholar
    • Export Citation
  • 45.

    Sree NK , Sridhar M, Suresh K, Banat IM, Rao LV: Isolation of thermotolerant, osmotolerant, flocculating Saccharomyces cerevisiae for ethanol production. Bioresour Technol 72, 4346 (2000)

    • Search Google Scholar
    • Export Citation
  • 46.

    Anderson PJ , McNeil K, Watson K: High-efficiency carbohydrate fermentation to ethanol at the temperature above 40 °C by Kluyveromyces marxianus var. marxianus isolated from sugar mills. J Appl Environ Microbiol 51(6), 13141320 (1986)

    • Search Google Scholar
    • Export Citation
  • 47.

    Ueno R , Hamada-Sato N, Urano N: Fermentation of molasses by several yeasts from hot spring drain and phylogeny of the unique isolate producing ethanol at 55 °C. J Tokyo Univ Fish 90, 2330 (2003)

    • Search Google Scholar
    • Export Citation
  • 48.

    Pereira FB , Guimarães PMR, Gomes DG, Mira NP, Teixeira MC, Sá-Correia I, Domingues L: Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations. Biotechnol Biofuels 4(57) (2011)

    • Search Google Scholar
    • Export Citation
  • 49.

    Canganella, F , Wiegel J (1993): The potential of thermophilic clostridia in biotechnology. In: The Clostridia and Biotechnology, ed. Woods DR, Butterworth-Heinemann, Boston, pp. 393429

    • Search Google Scholar
    • Export Citation
  • 50.

    Casey GP , Ingledew WM: Ethanol tolerance in yeasts. CRC Crit Rev Microbiol 13, 219280 (1986)

  • 51.

    Hayashida S , Feng DD, Hungo M: Functions of high concentration of alcohol-producing factor. Agric Biol Chem 38, 20012020 (1974)

  • 52.

    Nwachukwu IN , Ibekwe VI, Nwabueze RN, Anyanwu BN: Characterization of palm wine yeast isolates from industrial utilization. Afr J Biotechnol 5(19), 17251728 (2006)

    • Search Google Scholar
    • Export Citation
  • 53.

    Teramoto Y , Sato R, Ueda S: Characteristics of fermentation yeast isolated from traditional Ethiopian honey wine, ogol. Afr J Biotechnol 4(2), 160163 (2005)

    • Search Google Scholar
    • Export Citation
  • 54.

    Roukas T : Continuous ethanol production from carob pod extract by immobilized Saccharomyces cerevisiae in a packed-bed bioreactor. J Chem Technol Biotechnol 59, 387393 (1994)

    • Search Google Scholar
    • Export Citation
  • 55.

    Narendranath NV , Power R: Relationship between pH and medium dissolved solids in terms of growth and metabolism of Lactobacilli and Saccharomyces cerevisiae during ethanol production. Appl Environ Microbiol 71(5), 22392243 (2005)

    • Search Google Scholar
    • Export Citation
  • 56.

    D’Amore T , Panchal CJ, Stewart GG: Intracellular ethanol accumulation in Saccharomyces cerevisiae. Appl Environ Microbiol 54, 110114 (1988)

    • Search Google Scholar
    • Export Citation
  • 57.

    Dombek KM , Ingram LO: Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation. Appl Environ Microbiol 52(5), 975981 (1986)

    • Search Google Scholar
    • Export Citation
  • 58.

    Jimenez J , Benitez T: Characterization of wine yeasts for ethanol production. Appl Microbiol Biotechnol 25, 150154 (1986)

  • 59.

    Nagodawithana TW , Steinkraus K: Influence of the rate of ethanol production and accumulation on the viability of Saccharomyces cerevisiae in rapid fermentation. Appl Environ Microbiol 31, 158162 (1976)

    • Search Google Scholar
    • Export Citation
  • 60.

    Jasman, Prijambada ID , Hidayat C, Widianto D: Selection of yeast strains for ethanol fermentation of glucose-fructose-sucrose mixture. Indones J Biotechnol 17(2), 114120 (2012)

    • Search Google Scholar
    • Export Citation
  • 61.

    Jayus, Nurhayati, Mayzuhroh A , Arindhani S, Caroenchai C: Studies on bioethanol production of commercial baker’s and alcohol yeast under aerated culture using sugarcane molasses as the media. Agric Agric Sci Procedia 9, 493499 (2016)

    • Search Google Scholar
    • Export Citation
  • 62.

    Osman ME , Khattab OH, Hammad IA, EI-Hussieny NI: Optimization of bio-fuel production by Saccharomyces cerevisiae isolated from sugar cane bagasse. J Am Sci 7(5), (2011)

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2020 0 11 17
Sep 2020 0 16 16
Oct 2020 0 16 27
Nov 2020 0 20 18
Dec 2020 0 16 26
Jan 2021 0 16 19
Feb 2021 0 0 0