View More View Less
  • 1 Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
  • 2 University of Pecs, Hungary
Open access

Pituitary adenylate cyclase activating polypetide (PACAP) constitutes a neuropeptide that is widely distributed in the host exerting essential cytoprotective properties, whereas PACAP−/− mice display increased susceptibility to distinct immunopathological conditions. The orchestrated interplay between the gut microbiota and the host is pivotal in immune homeostasis and resistance to disease. Potential pertubations of the intestinal microbiota in PACAP−/− mice, however, have not been addressed so far. For the first time, we performed a comprehensive survey of the intestinal microbiota composition in PACAP−/− and wildtype (WT) mice starting 2 weeks postpartum until 18 months of age applying quantitative culture-independent techniques. Fecal enterobacteria and enterococci were lower in PACAP−/− than WT mice aged 1 month and ≥6 months, respectively. Whereas Mouse Intestinal Bacteroides were slightly higher in PACAP−/− versus WT mice aged 1 and 6 months, this later in life held true for Bacteroides/Prevotella spp. (≥12 months) and lactobacilli (>15 months of age). Strikingly, health-beneficial bifidobacteria were virtually absent in the intestines of PACAP−/− mice, even when still breastfed. In conclusion, PACAP deficiency is accompanied by distinct changes in fecal microbiota composition with virtually absent bifidobacteria as a major hallmark that might be linked to increased susceptibility to disease.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1.

    Miyata A , Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH.: Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164, 567574 (1989)

    • Search Google Scholar
    • Export Citation
  • 2.

    Vaudry D , Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H: Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev 52, 269324 (2000)

    • Search Google Scholar
    • Export Citation
  • 3.

    Gomariz RP , Juarranz Y, Abad C, Arranz A, Leceta J, Martinez C: VIP-PACAP system in immunity: new insights for multitarget therapy. Ann N Y Acad Sci 1070, 5174 (2006)

    • Search Google Scholar
    • Export Citation
  • 4.

    Abad C , Gomariz RP, Waschek JA: Neuropeptide mimetics and antagonists in the treatment of inflammatory disease: focus on VIP and PACAP. Curr Top Med Chem 6, 151163 (2006)

    • Search Google Scholar
    • Export Citation
  • 5.

    Vaudry D , Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BK, Hashimoto H, Galas L, Vaudry H: Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61, 283357 (2009)

    • Search Google Scholar
    • Export Citation
  • 6.

    Reglodi D , Kiss P, Szabadfi K, Atlasz T, Gabriel R, Horvath G, Szakaly P, Sandor B, Lubics A, Laszlo E, Farkas J, Matkovits A, Brubel R, Hashimoto H, Ferencz A, Vincze A, Helyes Z, Welke L, Lakatos A, Tamas A: PACAP is an endogenous protective factor-insights from PACAP-deficient mice. J Mol Neurosci 48, 482492 (2012)

    • Search Google Scholar
    • Export Citation
  • 7.

    Azuma YT , Hagi K, Shintani N, Kuwamura M, Nakajima H, Hashimoto H, Baba A, Takeuchi T: PACAP provides colonic protection against dextran sodium sulfate induced colitis. J Cell Physiol 216, 111119 (2008)

    • Search Google Scholar
    • Export Citation
  • 8.

    Nemetz N , Abad C, Lawson G, Nobuta H, Chhith S, Duong L, Tse G, Braun J, Waschek JA: Induction of colitis and rapid development of colorectal tumors in mice deficient in the neuropeptide PACAP. Int J Cancer 122, 18031809 (2008)

    • Search Google Scholar
    • Export Citation
  • 9.

    Hooper LV , Midtvedt T, Gordon JI: How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22, 283307 (2002)

    • Search Google Scholar
    • Export Citation
  • 10.

    Backhed F , Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al.: The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101, 1571815723 (2004)

    • Search Google Scholar
    • Export Citation
  • 11.

    LeBlanc JG , Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M: Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24, 160168 (2013)

    • Search Google Scholar
    • Export Citation
  • 12.

    Stappenbeck TS , Hooper LV, Gordon JI: Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A 99, 1545115455 (2002)

    • Search Google Scholar
    • Export Citation
  • 13.

    Husebye E , Hellstrom PM, Midtvedt T: Intestinal microflora stimulates myoelectric activity of rat small intestine by promoting cyclic initiation and aboral propagation of migrating myoelectric complex. Dig Dis Sci 39, 946956 (1994)

    • Search Google Scholar
    • Export Citation
  • 14.

    Sekirov I , Tam NM, Jogova M, Robertson ML, Li Y, Lupp C, Finlay BB: Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect Immun 76, 47264736 (2008)

    • Search Google Scholar
    • Export Citation
  • 15.

    Bereswill S , Fischer A, Plickert R, Haag LM, Otto B, Kühl AA, Dasti JI, Zautner AE, Muñoz M, Loddenkemper C, Gross U, Göbel UB, Heimesaat MM: Novel murine infection models provide deep insights into the “ménage à trois” of Campylobacter jejuni, microbiota and host innate immunity. PLoS One 6, e20953 (2011)

    • Search Google Scholar
    • Export Citation
  • 16.

    Cebra JJ : Influences of microbiota on intestinal immune system development. Am J Clin Nutr 69, 1046S1051S (1999)

  • 17.

    Ekmekciu I , von Klitzing E, Fiebiger U, Escher U, Neumann C, Bacher P, Scheffold A, Kühl AA, Bereswill S, Heimesaat MM: Immune responses to broad-spectrum anti biotic treatment and fecal microbiota transplantation in mice. Front Immunol 8, 397 (2017)

    • Search Google Scholar
    • Export Citation
  • 18.

    Farkas J , Sandor B, Tamas A, Kiss P, Hashimoto H, Nagy AD, Fulop BD, Juhasz T, Manavalan S, Reglodi D: Early neurobehavioral development of mice lacking endogenous PACAP. J Mol Neurosci 61, 468478 (2017)

    • Search Google Scholar
    • Export Citation
  • 19.

    Heimesaat MM , Bereswill S, Fischer A, Fuchs D, Struck D, Niebergall J, Jahn HK, Dunay IR, Moter A, Gescher DM, Schumann RR, Göbel UB, Liesenfeld O: Gram-negative bacteria aggravate murine small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii. J Immunol 177, 87858795 (2006)

    • Search Google Scholar
    • Export Citation
  • 20.

    Bereswill S , Kuhl AA, Alutis M, Fischer A, Mohle L, Struck D, Liesenfeld O, Göbel UB, Dunay IR, Heimesaat MM: The impact of Toll-like-receptor-9 on intestinal microbiota composition and extra-intestinal sequelae in experimental Toxoplasma gondii induced ileitis. Gut Pathogens 6, 19 (2014)

    • Search Google Scholar
    • Export Citation
  • 21.

    Heimesaat MM , Nogai A, Bereswill S, Plickert R, Fischer A, Loddenkemper C, Steinhoff U, Tchaptchet S, Thiel E, Freudenberg MA, Göbel UB, Uharek L: MyD88/TLR9 mediated immunopathology and gut microbiota dynamics in a novel murine model of intestinal graft-versus-host disease. Gut 59, 10791087 (2010)

    • Search Google Scholar
    • Export Citation
  • 22.

    Rausch S , Held J, Fischer A, Heimesaat MM, Kühl AA, Bereswill S, Hartmann S: Small intestinal nematode infection of mice is associated with increased enterobacterial loads alongside the intestinal tract. PLoS One 8, e74026 (2013)

    • Search Google Scholar
    • Export Citation
  • 23.

    Heimesaat MM , Boelke S, Fischer A, Haag LM, Loddenkemper C, Kühl AA, Göbel UB, Bereswill S: Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice. PLoS One 7, e40758 (2012)

    • Search Google Scholar
    • Export Citation
  • 24.

    von Klitzing E , Oz F, Ekmekciu I, Escher U, Bereswill S, Heimesaat MM: Comprehensive survey of intestinal microbiota changes in offspring of human microbiota-associated mice. Eur J Microbiol Immunol (Bp) 7, 6575 (2017).

    • Search Google Scholar
    • Export Citation
  • 25.

    Rodriguez JM , Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC, Marchesi JR, Collado MC: The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26, 26050 (2015)

    • Search Google Scholar
    • Export Citation
  • 26.

    Turnbaugh PJ , Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI: The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1, 6ra14 (2009)

    • Search Google Scholar
    • Export Citation
  • 27.

    Ekmekciu I , von Klitzing E, Fiebiger U, Neumann C, Bacher P, Scheffold A, Bereswill S1, Heimesaat MM: The Probiotic compound VSL#3 modulates mucosal, peripheral, and systemic immunity following murine broad-spectrum antibiotic treatment. Front Cell Infect Microbiol 7, 167 (2017)

    • Search Google Scholar
    • Export Citation
  • 28.

    Tojo R , Suarez A, Clemente MG, de los Reyes-Gavilan CG, Margolles A, Gueimonde M, Ruas-Madiedo P: Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J Gastroenterol 20, 1516315176 (2014)

    • Search Google Scholar
    • Export Citation
  • 29.

    Arboleya S , Solis G, Fernandez N, de los Reyes-Gavilan CG, Gueimonde M: Facultative to strict anaerobes ratio in the preterm infant microbiota: a target for intervention? Gut Microbes 3, 583588 (2012)

    • Search Google Scholar
    • Export Citation
  • 30.

    Langille MG , Meehan CJ, Koenig JE, Dhanani AS, Rose RA, Howlett SE, Beiko RG: Microbial shifts in the aging mouse gut. Microbiome 2, 50 (2014)

    • Search Google Scholar
    • Export Citation
  • 31.

    Sarkar A , Mandal S: Bifidobacteria-Insight into clinical outcomes and mechanisms of its probiotic action. Microbiol Res 192, 159171 (2016)

    • Search Google Scholar
    • Export Citation
  • 32.

    Heimesaat MM , Dunay IR, Alutis M, Fischer A, Möhle L, Göbel UB, Kühl AA, Bereswill S: Nucleotide-oligomerization-domain-2 affects commensal gut microbiota composition and intracerebral immunopathology in acute Toxoplasma gondii induced murine ileitis. PLoS One 9, e105120 (2014)

    • Search Google Scholar
    • Export Citation
  • 33.

    Klijn A , Mercenier A, Arigoni F: Lessons from the genomes of bifidobacteria. FEMS Microbiol Rev 29, 491509 (2005)

  • 34.

    Pokusaeva K , Johnson C, Luk B, Uribe G, Fu Y, Oezguen N, Matsunami RK, Lugo M, Major A, Mori-Akiyama Y, Hollister EB, Dann SM, Shi XZ, Engler DA, Savidge T, Versalovic J: GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol Motil 29 (2017)

    • Search Google Scholar
    • Export Citation
  • 35.

    Ekmekciu I , Fiebiger U, Stingl K, Bereswill S, Heimesaat MM: Amelioration of intestinal and systemic sequelae of murine Campylobacter jejuni infection by probiotic VSL#3 treatment. Gut Pathog 9, 17 (2017)

    • Search Google Scholar
    • Export Citation