View More View Less
  • 1 Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville Gabon, Africa
  • | 2 Université des Sciences de la Santé, BP 4009, Libreville, Gabon, Africa
  • | 3 Ecole Doctorale Régionale en Infectiologie Tropicale d’Afrique Centrale (ECODRAC), BP 876, Franceville, Gabon, Africa
Open access

Cross Mark

Plasmodium falciparum merozoite antigens (PfMAgs) play an essential role in the development of immunity to malaria. Currently, P. falciparum: protein 113 (Pf 113), apical membrane antigen 1 (AMA1), erythrocyte binding antigens (EBA175), and reticulocyte binding protein homologue 5 (RH5) are among the most PfMAgs studied. A comparative analysis of naturally acquired antibodies against these antigens in children would increase our knowledge about the development of protective immunity.

Analysis of antibodies to Pf113, PfAMA1, PfEBA175, and PfRH5 was conducted in rural population during 2013 and 2014. Both prevalence and levels of total IgG anti-PfAMA1 were higher than that of IgG anti-PfEBA175, anti-PfRH5, and anti-Pf113. Seroconversion to PfAMA1 and PfEBA175 occurred moderately in young children and reached to the maximum in adolescent and in adults. High prevalence of IgG anti-Pf113 was observed in young children of 3 to 6 years old in 2013. The four antigens were recognized by IgG 1, 2, 3, and 4 antibodies from a large proportion of the subjects, and all of them induced high levels of specific IgG1 against PfAMA1, PfEBA175, fewer by Pf113 and PfRH5.

Many asymptomatic children had specific IgG1 recognizing multiple antigens, and these IgG1 antibodies could be associated with a reduced risk of developing malaria symptoms.

  • 1.

    Gardner MJ , Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B: Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419(6906), 498511 (2002)

    • Search Google Scholar
    • Export Citation
  • 2.

    Lasonder E , Ishihama Y, Andersen JS, Vermunt AM, Pain A, Sauerwein RW, Eling WM, Hall N, Waters AP, Stunnenberg HG, Mann M: Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature, 419(6906), 537542 (2002)

    • Search Google Scholar
    • Export Citation
  • 3.

    Bozdech Z , Llinás M, Pulliam BL, Wong ED, Zhu J, DeRisi JL: The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol, 1(1), E5 (2003)

    • Search Google Scholar
    • Export Citation
  • 4.

    Obando-Martinez AZ , Curtidor H, Arévalo-Pinzón G, Vanegas M, Vizcaino C, Patarroyo MA, Patarroyo ME: Conserved high activity binding peptides are involved in adhesion of two detergent-resistant membrane-associated merozoite proteins to red blood cells during invasion. J Med Chem, 53(10), 39073918 (2010)

    • Search Google Scholar
    • Export Citation
  • 5.

    Smythe JA , Coppel RL, Brown GV, Ramasamy R, Kemp DJ, Anders RF: Identification of two integral membrane proteins of Plasmodium falciparum. Proc Natl Acad Sci U S A 85(14), 51955199 (1988)

    • Search Google Scholar
    • Export Citation
  • 6.

    Cowman AF , Crabb BS: Invasion of red blood cells by malaria parasites. Cell 124(4), 755766 (2006)

  • 7.

    Pasvol G , Wilson RJ: The interaction of malaria parasites with red blood cells. Br Med Bull 38(2), 133140 (1982)

  • 8.

    Wright GJ , Rayner JC: Plasmodium falciparum erythrocyte invasion: combining function with immune evasion. PLoS Pathog 10(3), e1003943 (2014)

    • Search Google Scholar
    • Export Citation
  • 9.

    Jones TR , Narum DL, Gozalo AS, Aguiar J, Fuhrmann SR, Liang H, Haynes JD, Moch JK, Lucas C, Luu T, Magill AJ, Hoffman SL, Sim BK: Protection of Aotus monkeys by Plasmodium falciparum EBA-175 region II DNA primeprotein boost immunization regimen. J Infect Dis 183(2), 303312 (2001)

    • Search Google Scholar
    • Export Citation
  • 10.

    Orlandi P A , Klotz FW, and Haynes JD: A malaria invasion receptor, the 175-kilodalton erythrocyte binding antigen of Plasmodium falciparum recognizes the terminal Neu5Ac(alpha 2-3)Gal-sequences of glycophorin A. J Cell Biol 116(4), 901909 (1992)

    • Search Google Scholar
    • Export Citation
  • 11.

    Sim BK , Orlandi PA, Haynes JD, Klotz FW, Carter JM, Camus D, Zegans ME, Chulay JD: Primary structure of the 175K Plasmodium falciparum erythrocyte binding antigen and identification of a peptide which elicits antibodies that inhibit malaria merozoite invasion. J Cell Biol 111(5 Pt 1), 18771884 (1990)

    • Search Google Scholar
    • Export Citation
  • 12.

    Klotz FW , Orlandi PA, Reuter G, Cohen SJ, Haynes JD, Schauer R, Howard RJ, Palese P, Miller LH: Binding of Plasmodium falciparum 175-kilodalton erythrocyte binding antigen and invasion of murine erythrocytes requires N-acetylneuraminic acid but not its O-acetylated form. Mol Biochem Parasitol 51(1), 4954 (1992)

    • Search Google Scholar
    • Export Citation
  • 13.

    Malkin EM , Diemert DJ, McArthur JH, Perreault JR, Miles AP, Giersing BK, Mullen GE, Orcutt A, Muratova O, Awkal M, Zhou H, Wang J, Stowers A, Long CA, Mahanty S, Miller LH, Saul A, Durbin AP: Phase 1 clinical trial of apical membrane antigen 1: an asexual blood-stage vaccine for Plasmodium falciparum malaria. Infect Immun 73(6), 36773685 (2005)

    • Search Google Scholar
    • Export Citation
  • 14.

    Macraild CA , Anders RF, Foley M, Norton RS: Apical membrane antigen 1 as an anti-malarial drug target. Curr Top Med Chem 11(16), 20392047 (2011)

    • Search Google Scholar
    • Export Citation
  • 15.

    Bustamante LY , Bartholdson SJ, Crosnier C, Campos MG, Wanaguru M, Nguon C, Kwiatkowski DP, Wright GJ, Rayner JC: A full-length recombinant Plasmodium falciparum PfRH5 protein induces inhibitory antibodies that are effective across common PfRH5 genetic variants. Vaccine 31(2), 373379 (2013)

    • Search Google Scholar
    • Export Citation
  • 16.

    Douglas AD , Williams AR, Illingworth JJ, Kamuyu G, Biswas S, Goodman AL, Wyllie DH, Crosnier C, Miura K, Wright GJ, Long CA, Osier FH, Marsh K, Turner AV, Hill AV, Draper SJ: The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody. Nat Commun 2, 601 (2011)

    • Search Google Scholar
    • Export Citation
  • 17.

    Osier FH , Mackinnon MJ, Crosnier C, Fegan G, Kamuyu G, Wanaguru M, Ogada E, McDade B, Rayner JC, Wright GJ, Marsh K: New antigens for a multicomponent bloodstage malaria vaccine. Sci Transl Med 6(247), 247ra102 (2014)

    • Search Google Scholar
    • Export Citation
  • 18.

    Tonkin ML , Roques M, Lamarque MH, Pugnière M, Douguet D, Crawford J, Lebrun M, Boulanger MJ: Host cell invasion by apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide. Science 333(6041), 463467 (2011)

    • Search Google Scholar
    • Export Citation
  • 19.

    Riglar DT , Richard D, Wilson DW, Boyle MJ, Dekiwadia C, Turnbull L, Angrisano F, Marapana DS, Rogers KL, Whitchurch CB, Beeson JG, Cowman AF, Ralph SA, Baum J: Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host Microbe 9(1), 920 (2011)

    • Search Google Scholar
    • Export Citation
  • 20.

    Collins CR , Withers-Martinez C, Bentley GA, Batchelor AH, Thomas AW, Blackman MJ: Fine mapping of an epitope recognized by an invasion-inhibitory monoclonal antibody on the malaria vaccine candidate apical membrane antigen 1. J Biol Chem 282(10), 74317441 (2007)

    • Search Google Scholar
    • Export Citation
  • 21.

    Baum J. , Chen L, Healer J, Lopaticki S, Boyle M, Triglia T, Ehlgen F, Ralph SA, Beeson JG, Cowman AF: Reticulocyte- binding protein homologue 5 – an essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. Int J Parasitol 39(3), 371380 (2009)

    • Search Google Scholar
    • Export Citation
  • 22.

    Crosnier C , Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, Mboup S, Ndir O, Kwiatkowski DP, Duraisingh MT, Rayner JC, Wright GJ: Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature 480(7378), 534537 (2011)

    • Search Google Scholar
    • Export Citation
  • 23.

    Williams AR , Douglas AD, Miura K, Illingworth JJ, Choudhary P, Murungi LM, Furze JM, Diouf A, Miotto O, Crosnier C, Wright GJ, Kwiatkowski DP, Fairhurst RM, Long CA, Draper SJ: Enhancing blockade of Plasmodium falciparum erythrocyte invasion: assessing combinations of antibodies against PfRH5 and other merozoite antigens. PLoS Pathog 8(11), e1002991 (2012)

    • Search Google Scholar
    • Export Citation
  • 24.

    Sanders PR , Cantin GT, Greenbaum DC, Gilson PR, Nebl T, Moritz RL, Yates JR 3rd, Hodder AN, Crabb BS: Identification of protein complexes in detergent-resistant membranes of Plasmodium falciparum schizonts. Mol Biochem Parasitol 154(2), 148157 (2007)

    • Search Google Scholar
    • Export Citation
  • 25.

    Tran TM , Ongoiba A, Coursen J, Crosnier C, Diouf A, Huang CY, Li S, Doumbo S, Doumtabe D, Kone Y, Bathily A, Dia S, Niangaly M, Dara C, Sangala J, Miller LH, Doumbo OK, Kayentao K, Long CA, Miura K, Wright GJ, Traore B, Crompton PD: Naturally acquired antibodies specific for Plasmodium falciparum reticulocyte-binding protein homologue 5 inhibit parasite growth and predict protection from malaria. J Infect Dis 209(5), 789798 (2014)

    • Search Google Scholar
    • Export Citation
  • 26.

    Richards JS , Arumugam TU, Reiling L, Healer J, Hodder AN, Fowkes FJ, Cross N, Langer C, Takeo S, Uboldi AD, Thompson JK, Gilson PR, Coppel RL, Siba PM, King CL, Torii M, Chitnis CE, Narum DL, Mueller I, Crabb BS, Cowman AF, Tsuboi T, Beeson JG: Identification and prioritization of merozoite antigens as targets of protective human immunity to Plasmodium falciparum malaria for vaccine and biomarker development. J Immunol 191(2), 795809 (2013)

    • Search Google Scholar
    • Export Citation
  • 27.

    Toure FS , Deloron P, Migot-Nabias F: Analysis of human antibodies to erythrocyte binding antigen 175 peptide 4 of Plasmodium falciparum. Clin Med Res 4(1), 16 (2006)

    • Search Google Scholar
    • Export Citation
  • 28.

    WHO: World Malaria Report. Vaccins et Vaccination: La Situation Dans le Monde, 2009

  • 29.

    Stoute JA , Heppner DG Jr, Mason CJ, Siangla J, Opollo MO, Kester KE, Vigneron L, Voss G, Walter MJ, Tornieporth N, Cohen JD, Ballou WR: Phase 1 safety and immunogenicity trial of malaria vaccine RTS,S/AS02A in adults in a hyperendemic region of western Kenya. Am J Trop Med Hyg 75(1), 166170 (2006)

    • Search Google Scholar
    • Export Citation
  • 30.

    Ouattara A , Barry AE, Dutta S, Remarque EJ, Beeson JG, Plowe CV: Designing malaria vaccines to circumvent antigen variability. Vaccine 33(52), 75067512 (2015)

    • Search Google Scholar
    • Export Citation
  • 31.

    Roffi J , Portales P, Delgado G, Parent G, Chevassus-Agnès S: Antigenic specificity of antiplasmodium antibodies in an endemic area: an attempt at correlation with the induction of protective immunity. Ann Inst Pasteur Immunol 136C(3), 323341 (1985)

    • Search Google Scholar
    • Export Citation
  • 32.

    Boudin C , Sheick I, Chumpitazi B, Pazart L, Hogh B, Peyron F, Deloron P, Picot S, Ambroise-Thomas P: The multifactorial and multistage character of protective immunity to Plasmodium falciparum, naturally acquired by an indigenous population in Burkina Faso. Scand J Immunol 39(4), 409417 (1994)

    • Search Google Scholar
    • Export Citation
  • 33.

    Agnandji ST , Fernandes JF, Bache EB, Ramharter M: Clinical development of RTS,S/AS malaria vaccine: a systematic review of clinical Phase I-III trials. Future Microbiol 10(10), 15531578 (2015)

    • Search Google Scholar
    • Export Citation
  • 34.

    Imboumy-Limoukou RK , Oyegue-Liabagui SL, Ndidi S, Pegha-Moukandja I, Kouna CL, Galaway F, Florent I, Lekana-Douki JB: Comparative antibody responses against three antimalarial vaccine candidate antigens from urban and rural exposed individuals in Gabon. Eur J Microbiol Immunol (Bp) 6(4), 287297 (2016)

    • Search Google Scholar
    • Export Citation
  • 35.

    Elissa N , Migot-Nabias F, Luty A, Renaut A, Touré F, Vaillant M, Lawoko M, Yangari P, Mayombo J, Lekoulou F, Tshipamba P, Moukagni R, Millet P, Deloron P: Relationship between entomological inoculation rate, Plasmodium falciparum prevalence rate, and incidence of malaria attack in rural Gabon. Acta Trop 85(3), 355361 (2003)

    • Search Google Scholar
    • Export Citation
  • 36.

    Planche T , Krishna S, Kombila M, Engel K, Faucher JF, Ngou-Milama E, Kremsner PG: Comparison of methods for the rapid laboratory assessment of children with malaria. Am J Trop Med Hyg 65(5), 599602 (2001)

    • Search Google Scholar
    • Export Citation
  • 37.

    Cheng Q , Lawrence G, Reed C, Stowers A, Ranford-Cartwright L, Creasey A, Carter R, Saul A: Measurement of Plasmodium falciparum growth rates in vivo: a test of malaria vaccines. Am J Trop Med Hyg 57(4), 495500 (1997)

    • Search Google Scholar
    • Export Citation
  • 38.

    Rasheed FN , Bulmer JN, De Francisco A, Jawla MF, Jakobsen PH, Jepson A, Greenwood BM: Relationships between maternal malaria and malarial immune responses in mothers and neonates. Parasite Immunol 17(1), 110 (1995)

    • Search Google Scholar
    • Export Citation
  • 39.

    Pegha Moukandja I , EBiteghe Bi ssone JC, Sagara I, Kassa Kassa RF, Ondzaga J, Lékana Douki JB, Bouyou Akotet M, Nkoghe Mba D, Touré Ndouo FS: Marked rise in the prevalence of asymptomatic Plasmodium falciparum infection in rural Gabon. PLoS One 11(5), e0153899 (2016)

    • Search Google Scholar
    • Export Citation
  • 40.

    Fowkes FJ , Richards JS, Simpson JA, Beeson JG: The relationship between anti-merozoite antibodies and incidence of Plasmodium falciparum malaria: a systematic review and meta-analysis. PLoS Med 7(1), e1000218 (2010)

    • Search Google Scholar
    • Export Citation
  • 41.

    Bull PC, K Marsh: The role of antibodies to Plasmodium falciparum-infected-erythrocyte surface antigens in naturally acquired immunity to malaria. Trends Microbiol 10(2), 5558 (2002)

    • Search Google Scholar
    • Export Citation
  • 42.

    Kinyanjui SM , Mwangi T, Bull PC, Newbold CI, Marsh K: Protection against clinical malaria by heterologous immunoglobulin G antibodies against malaria-infected erythrocyte variant surface antigens requires interaction with asymptomatic infections. J Infect Dis 190(9), 15271533 (2004)

    • Search Google Scholar
    • Export Citation
  • 43.

    Akpogheneta OJ , Duah NO, Tetteh KK, Dunyo S, Lanar DE, Pinder M, Conway DJ: Duration of naturally acquired antibody responses to blood-stage Plasmodium falciparum is age dependent and antigen specific. Infect Immun 76(4), 17481755 (2008)

    • Search Google Scholar
    • Export Citation
  • 44.

    Smith T , Felger I, Kitua A, Tanner M, Beck HP: Dynamics of multiple Plasmodium falciparum infections in infants in a highly endemic area of Tanzania. Trans R Soc Trop Med Hyg 93(Suppl 1), 3539 (1999)

    • Search Google Scholar
    • Export Citation
  • 45.

    Smith T , Beck HP, Kitua A, Mwankusye S, Felger I, Fraser-Hurt N, Irion A, Alonso P, Teuscher T, Tanner M: Age dependence of the multiplicity of Plasmodium falciparum infections and of other malariological indices in an area of high endemicity. Trans R Soc Trop Med Hyg 93 Suppl 1, 1520 (1999)

    • Search Google Scholar
    • Export Citation
  • 46.

    Ntoumi F , Contamin H, Rogier C, Bonnefoy S, Trape JF, Mercereau-Puijalon O: Age-dependent carriage of multiple Plasmodium falciparum merozoite surface antigen-2 alleles in asymptomatic malaria infections. Am J Trop Med Hyg 52(1), 8188 (1995)

    • Search Google Scholar
    • Export Citation
  • 47.

    Kun JF , Missinou MA, Lell B, Sovric M, Knoop H, Bojowald B, Dangelmaier O, Kremsner PG: New emerging Plasmodium falciparum genotypes in children during the transition phase from asymptomatic parasitemia to malaria. Am J Trop Med Hyg 66(6), 653658 (2002)

    • Search Google Scholar
    • Export Citation
  • 48.

    Färnert A , Rooth I, Svensson, Snounou G, Björkman A: Complexity of Plasmodium falciparum infections is consistent over time and protects against clinical disease in Tanzanian children. J Infect Dis 179(4), 989995 (1999)

    • Search Google Scholar
    • Export Citation
  • 49.

    White MT , Griffin JT, Akpogheneta O, Conway DJ, Koram KA, Riley EM, Ghani AC: Dynamics of the antibody response to Plasmodium falciparum infection in African children. J Infect Dis 210(7), 11151122 (2014)

    • Search Google Scholar
    • Export Citation
  • 50.

    Persson KE , Fowkes FJ, McCallum FJ, Gicheru N, Reiling L, Richards JS, Wilson DW, Lopaticki S, Cowman AF, Marsh K, Beeson JG: Erythrocyte-binding antigens of Plasmodium falciparum are targets of human inhibitory antibodies and function to evade naturally acquired immunity. J Immunol 191(2), 785794 (2013)

    • Search Google Scholar
    • Export Citation
  • 51.

    McCallum FJ , Persson KE, Mugyenyi CK, Fowkes FJ, Simpson JA, Richards JS, Williams TN, Marsh K, Beeson JG: Acquisition of growth-inhibitory antibodies against blood-stage Plasmodium falciparum. PLoS One 3(10), e3571 (2008)

    • Search Google Scholar
    • Export Citation
  • 52.

    Stanisic DI , Good MF: Whole organism blood stage vaccines against malaria. Vaccine 33(52), 74697475 (2015)

  • 53.

    Mutapi F , Roussilhon C, Mduluza T, Druilhe P: Anti-malaria humoral responses in children exposed to Plasmodium falciparum and Schistosoma haematobium. Mem Inst Oswaldo Cruz 102(3), 405409 (2007)

    • Search Google Scholar
    • Export Citation
  • 54.

    Roussilhon C , Oeuvray C, Müller-Graf C, Tall A, Rogier C, Trape JF, Theisen M, Balde A, Pérignon JL, Druilhe P: Long-term clinical protection from falciparum malaria is strongly associated with IgG3 antibodies to merozoite surface protein 3. PLoS Med 4(11), e320 (2007)

    • Search Google Scholar
    • Export Citation
  • 55.

    Tongren JE , Drakeley CJ, McDonald SL, Reyburn HG, Manjurano A, Nkya WM, Lemnge MM, Gowda CD, Todd JE, Corran PH, Riley EM: Target antigen, age, and duration of antigen exposure independently regulate immunoglobulin G subclass switching in malaria. Infect Immun 74(1), 257264 (2006)

    • Search Google Scholar
    • Export Citation
  • 56.

    Sjöberg K , Lepers JP, Raharimalala L, Larsson A, Olerup O, Marbiah NT, Troye-Blomberg M, Perlmann P: Genetic regulation of human anti-malarial antibodies in twins. Proc Natl Acad Sci U S A 89(6), 21012104 (1992)

    • Search Google Scholar
    • Export Citation
  • 57.

    Aucan C , Traoré Y, Fumoux F, Rihet P: Familial correlation of immunoglobulin G subclass responses to Plasmodium falciparum antigens in Burkina Faso. Infect Immun 69(2), 9961001 (2001)

    • Search Google Scholar
    • Export Citation
  • 58.

    Jepson A , Sisay-Joof F, Banya W, Hassan-King M, Frodsham A, Bennett S, Hill AV, Whittle H: Genetic linkage of mild malaria to the major histocompatibility complex in Gambian children: study of affected sibling pairs. BMJ 315(7100), 9697 (1997)

    • Search Google Scholar
    • Export Citation
  • 59.

    Stirnadel HA , Beck HP, Alpers MP, Smith TA: Heritability and segregation analysis of immune responses to specific malaria antigens in Papua New Guinea. Genet Epidemiol 17(1), 1634 (1999)

    • Search Google Scholar
    • Export Citation
  • 60.

    Modiano D , Sirima BS, Sawadogo A, Sanou I, Paré J, Konaté A, Pagnoni F: Severe malaria in Burkina Faso: influence of age and transmission level on clinical presentation. Am J Trop Med Hyg 59(4), 539542 (1998)

    • Search Google Scholar
    • Export Citation
  • 61.

    Kwiatkowski DP : The complexity of genetic variation in a simple immune system. Trends Genet 21(4), 197199 (2005)

  • 62.

    Tangteerawatana P , Perlmann H, Hayano M, Kalambaheti T, Troye-Blomberg M, Khusmith S: IL4 gene polymorphism and previous malaria experiences manipulate anti- Plasmodium falciparum antibody isotype profiles in complicated and uncomplicated malaria. Malar J 8, 286 (2009)

    • Search Google Scholar
    • Export Citation
  • 63.

    Cabrera G , Cot M, Migot-Nabias F, Kremsner PG, Deloron P, Luty AJ: The sickle cell trait is associated with enhanced immunoglobulin G antibody responses to Plasmodium falciparum variant surface antigens. J Infect Dis 191(10), 16311638 (2005)

    • Search Google Scholar
    • Export Citation
  • 64.

    Ntoumi F , Flori L, Mayengue PI, Matondo Maya DW, Issifou S, Deloron P, Lell B, Kremsner PG, Rihet P: Influence of carriage of hemoglobin AS and the Fc gamma receptor IIa-R131 allele on levels of immunoglobulin G2 antibodies to Plasmodium falciparum merozoite antigens in Gabonese children. J Infect Dis 192(11), 19751980 (2005)

    • Search Google Scholar
    • Export Citation
  • 65.

    Israelsson E , Balogun H, Vasconcelos NM, Beser J, Roussilhon C, Rogier C, Trape JF, Berzins K: Antibody responses to a C-terminal fragment of the Plasmodium falciparum blood-stage antigen Pf332 in Senegalese individuals naturally primed to the parasite. Clin Exp Immunol 152(1), 6471 (2008)

    • Search Google Scholar
    • Export Citation
  • 66.

    Duah NO , Weiss HA, Jepson A, Tetteh KK, Whittle HC, Conway DJ: Heritability of antibody isotype and subclass responses to Plasmodium falciparum antigens. PLoS One 4(10), e7381 (2009)

    • Search Google Scholar
    • Export Citation
  • 67.

    Courtin D , Oesterholt M, Huismans H, Kusi K, Milet J, Badaut C, Gaye O, Roeffen W, Remarque EJ, Sauerwein R, Garcia A, Luty AJ: The quantity and quality of African children’s IgG responses to merozoite surface antigens reflect protection against Plasmodium falciparum malaria. PLoS One 4(10), e7590 (2009)

    • Search Google Scholar
    • Export Citation
  • 68.

    Bereczky S , Liljander A, Rooth I, Faraja L, Granath F, Montgomery SM, Färnert A: Multiclonal asymptomatic Plasmodium falciparum infections predict a reduced risk of malaria disease in a Tanzanian population. Microbes Infect 9(1), 103110 (2007)

    • Search Google Scholar
    • Export Citation
  • 69.

    Rono J , Osier FH, Olsson D, Montgomery S, Mhoja L, Rooth I, Marsh K, Färnert A: Breadth of anti-merozoite an tibody responses is associated with the genetic diversity of asymptomatic Plasmodium falciparum infections and protection against clinical malaria. Clin Infect Dis 57(10), 14091416 (2013)

    • Search Google Scholar
    • Export Citation
  • 70.

    Kinyanjui SM ,Conway DJ, Lanar DE, Marsh K: IgG antibody responses to Plasmodium falciparum merozoite antigens in Kenyan children have a short half-life. Malar J 6, 82 (2007)

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 33 2
PDF Downloads 32 25 0