View More View Less
  • 1 Laboratório de Avaliação do Movimento Humano, Faculdade de Educação Física e Dança, Universidade Federal de Goiás, Goiânia, Brazil
  • | 2 Escola Superior de Educação Física e Fisioterapia do Estado de Goiás, Universidade Estadual de Goiás, Goiânia, Brazil
  • | 3 Centro de Educação Física e Desportos, Universidade Federal do Espírito Santo, Vitória, Brazil
  • | 4 Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
Open access

Abstract

Although significant increases in gaming may not always be beneficial, exergames (a new generation of video games also known as exergaming or active video games) appear as an alternative, feasible, attractive, and safe way to perform physical exercise for most clinical and nonclinical populations. Therefore, it is important to recognize that exergames can be considered a useful tool for coping with the COVID-19 outbreak and the recommended social distancing period.

Abstract

Although significant increases in gaming may not always be beneficial, exergames (a new generation of video games also known as exergaming or active video games) appear as an alternative, feasible, attractive, and safe way to perform physical exercise for most clinical and nonclinical populations. Therefore, it is important to recognize that exergames can be considered a useful tool for coping with the COVID-19 outbreak and the recommended social distancing period.

We read with great interest the recent letter to the editor “Problematic online gaming and the COVID-19 pandemic” (King et al., 2020) published in the Journal of Behavioral Addictions. The authors expressed their concern about the increase in online gaming due to stay-at-home mandates and quarantines related to the COVID-19 outbreak. Although significant increases in gaming may not always be beneficial (King, Koster, & Billieux, 2019), we would like to call attention to a specific type of gaming – exergames. Exergames are an interesting way to play a video game while exercising that is both feasible and attractive for most clinical and nonclinical populations (Fung et al., 2010). Therefore, we offer a critical appraisal of the potential usage of exergames as a coping strategy for social isolation in a home-based environment during the COVID-19 outbreak and the recommended social distancing period.

Exergames, a new generation of video games also known as exergaming or active video games, are linked to the idea of integrating ample body movements (e.g., trunk, upper and/or lower limbs) (Staiano & Calvert, 2011; Wiemeyer et al., 2015) with attractive digital games (Rizzo, Lange, Suma, & Bolas, 2011; Wiemeyer et al., 2015). Visual and auditory stimuli are combined with different types of equipment (e.g., balance boards, steeping mats, dance mats, dumbbells, cameras, and other types of sensors and inputs) that allow users to move to play (Baracho, Gripp, & Lima, 2012; Lieberman et al., 2011). Exergames, like traditional video games, can also be played in multiplayer mode, which can contribute to increasing social interaction in a home environment (O’Donovan et al., 2012; Peng & Crouse, 2013). Currently, there are several types of exergames, such as those which simulate traditional aerobic exercises (e.g., walking, running, and cycling) (Graves et al., 2010; Wu, Wu, & Chu, 2015), sports modalities (e.g., basketball, bowling, tennis, table tennis, baseball, swimming, ping-pong, volleyball, beach volleyball, and boxing), dancing (Neves et al., 2015; Unnithan, Houser, & Fernhall, 2006; Viana et al., 2017), and weight-bearing exercises (Moreira, Rodacki, Costa, Pitta, & Bento, 2020; Viana et al., 2018; Viana, Gentil, Andrade, Vancini, & de Lira, 2019). Consoles that enable this experience are Sony’s PlayStation Move®, Microsoft’s Xbox Kinect® and Nintendo’s Wii® (Viana et al., 2020; Wiemeyer et al., 2015).

Compared to online gaming, exergames appear more advantageous because they induce acute and chronic beneficial physiological and psychological changes that are not typically found following traditional forms of sedentary video gaming. Most studies involving exergames have investigated their effects on behavioral, cognitive, psychological and physical outcomes (Benzing & Schmidt, 2018; Viana et al., 2020). There is evidence that exergame interventions are able to improve physical activity levels (Fogel, Miltenberger, Graves, & Koehler, 2010), the performance of daily activities (Neumann, Meidert, Barberà-Guillem, Poveda-Puente, & Becker, 2018; Zangirolami-Raimundo et al., 2019), muscle strength in older adults (Htut, Hiengkaew, Jalayondeja, & Vongsirinavarat, 2018), heart rate (Graves et al., 2010; Neves et al., 2015; Rodrigues et al., 2015; Viana et al., 2017, 2018), oxygen consumption (Graves et al., 2010; Rodrigues et al., 2015; Viana et al., 2018), and energy expenditure in various populations (Graves et al., 2010; Rodrigues et al., 2015; Viana et al., 2018; Wu et al., 2015), improvements in body composition in children (Staiano, Abraham, & Calvert, 2013), postural balance (Jorgensen, Laessoe, Hendriksen, Nielsen, & Aagaard, 2013), cognitive function in older adults (Maillot, Perrot, & Hartley, 2012), and anxiety disorders in different populations (Viana & de Lira, 2020; Viana et al., 2017). Therefore, although access to exergames may be more limited than access to traditional video games, the benefits of this type of video games must be taken into account during the COVID-19 outbreak due to its strong motivational ability. Exergames are great in increasing motivation for exercise (Peng & Crouse, 2013), and physical exercise plays an important role in coping with the detrimental effects on health imposed by social isolation and lockdown, such as a decrease in physical activity levels and an increase in sedentary behavior.

In summary, while we applaud the manuscript by King, Delfabbro, Billieux, and Potenza (2020), it is also important to recognize that exergames can be considered a useful tool for coping with the negative consequences imposed by the COVID-19 outbreak and self-isolation period.

Funding sources

This study was funded by Fundação de Amparo à Pesquisa do Estado de Goiás-FAPEG/Brazil (grant no. 201210267001056) and by Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq/Brazil (grant no. 405096/2016-0).

Authors’ contribution

Author RBV wrote the first draft of the letter and all authors contributed to and have approved the final manuscript.

Conflict of interest

The authors report no financial or other relationship relevant to the subject of this article.

References

  • Baracho, A. F. D. O., Gripp, F. J., & Lima, M. R. De. (2012). Exergames and the school physical education in the digital culture. Revista Brasileira de Ciências Do Esporte, 34(1), 111126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benzing, V., & Schmidt, M. (2018). Exergaming for children and adolescents: Strengths, weaknesses, opportunities and threats. Journal of Clinical Medicine, 7(11), 422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogel, V. A., Miltenberger, R. G., Graves, R., & Koehler, S. (2010). The effects of exergaming on physical activity among inactive children in a physical education classroom. Journal of Applied Behavior Analysis, 43(4), 591600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fung, V., So, K., Park, E., Ho, A., Shaffer, J., Chan, E., et al. (2010). The utility of a video game system in rehabilitation of burn and nonburn patients: A survey among occupational therapy and physiotherapy practitioners. Journal of Burn Care and Research, 31(5), 768775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graves, L. E., Ridgers, N. D., Williams, K., Stratton, G., Atkinson, G., & Cable, N. T. (2010). The physiological cost and enjoyment of Wii Fit in adolescents, young adults, and older adults. Journal of Physical Activity and Health, 7(3), 393401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Htut, T. Z. C., Hiengkaew, V., Jalayondeja, C., & Vongsirinavarat, M. (2018). Effects of physical, virtual reality-based, and brain exercise on physical, cognition, and preference in older persons: A randomized controlled trial. European Review of Aging and Physical Activity, 15(1), 10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, M. G., Laessoe, U., Hendriksen, C., Nielsen, O. B. F., & Aagaard, P. (2013). Efficacy of Nintendo Wii training on mechanical leg muscle function and postural balance in community-dwelling older adults: A randomized controlled trial. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 68(7), 845852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, D. L., Delfabbro, P. H., Billieux, J., & Potenza, M. N. (2020). Problematic online gaming and the COVID-19 pandemic. Journal of Behavioral Addictions, 9(2), 184186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, D., Koster, E., & Billieux, J. (2019). Study what makes games addictive. Nature, 573(7774), 346–346.

  • Lieberman, D. A., Chamberlin, B., Medina, E., Franklin, B. A., Sanner, B. M., Vafiadis, D. K., et al. . (2011). The power of play: Innovations in getting active summit 2011. Circulation, 123(21), 25072516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maillot, P., Perrot, A., & Hartley, A. (2012). Effects of interactive physical-activity video-game training on physical and cognitive function in older adults. Psychology and Aging, 27(3), 589600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moreira, N. B., Rodacki, A. L. F., Costa, S. N., Pitta, A., & Bento, P. C. B. (2020). Perceptive–cognitive and physical function in prefrail older adults: Exergaming versus traditional multicomponent training. Rejuvenation Research, rej.2020.2302, 17.

    • Search Google Scholar
    • Export Citation
  • Neumann, S., Meidert, U., Barberà-Guillem, R., Poveda-Puente, R., & Becker, H. (2018). Effects of an exergame software for older adults on fitness, activities of daily living performance, and quality of life. Games for Health Journal, 7(5), 341346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neves, L. E. D. S., Cerávolo, M. P. D. S., Silva, E., De Freitas, W. Z., Da Silva, F. F., Higino, W. P., et al. (2015). Cardiovascular effects of Zumba® performed in a virtual environment using XBOX Kinect. Journal of Physical Therapy Science, 27(9), 28632865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Donovan, C., Hirsch, E., Holohan, E., McBride, I., McManus, R., & Hussey, J. (2012). Energy expended playing Xbox KinectTM and WiiTM games: A preliminary study comparing single and multiplayer modes. Physiotherapy, 98(3), 224229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, W., & Crouse, J. (2013). Playing in parallel: The effects of multiplayer modes in active video game on motivation and physical exertion. Cyberpsychology, Behavior, and Social Networking, 16(6), 423427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rizzo, A. A., Lange, B., Suma, E. A., & Bolas, M. (2011). Virtual reality and interactive digital game technology: New tools to address obesity and diabetes. Journal of Diabetes Science and Technology, 5(2), 256264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodrigues, G. A. A., Felipe, D. D. S., Silva, E., De Freitas, W. Z., Higino, W. P., Da Silva, F. F., et al. (2015). Acute cardiovascular responses while playing virtual games simulated by Nintendo Wii®. Journal of Physical Therapy Science, 27(9), 28492851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staiano, A. E., Abraham, A. A., & Calvert, S. L. (2013). Adolescent exergame play for weight loss and psychosocial improvement: A controlled physical activity intervention. Obesity, 21(3), 598601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staiano, A. E., & Calvert, S. L. (2011). Wii tennis play for low-income african american adolescents’ energy expenditure. Cyberpsychology, 5(1), 4.

    • Search Google Scholar
    • Export Citation
  • Unnithan, V., Houser, W., & Fernhall, B. (2006). Evaluation of the energy cost of playing a dance simulation video game in overweight and non-overweight children and adolescents. International Journal of Sports Medicine, 27(10), 804809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viana, R. B., Alves, C. L., Vieira, C. A., Vancini, R. L., Campos, M. H., Gentil, P., et al. (2017). Anxiolytic effects of a single session of the exergame Zumba® Fitness on healthy young women. Games for Health Journal, 6(6), 365370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viana, R. B., Dankel, S. J., Loenneke, J. P., Gentil, P., Vieira, C. A., Andrade, M. dos S., et al. (2020). The effects of exergames on anxiety levels: A systematic review and meta‐analysis. Scandinavian Journal of Medicine & Science in Sports, sms.13654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viana, R. B., & de Lira, C. A. B. (2020). Exergames as coping strategies for anxiety disorders during the COVID-19 quarantine period. Games for Health Journal, 9(3), 147149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viana, R. B., Gentil, P., Andrade, M. S., Vancini, R. L., & de Lira, C. A. B. (2019). Is the energy expenditure provided by exergames valid? International Journal of Sports Medicine, 40(09), 563568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viana, R. B., Vancini, R. L., Vieira, C. A., Gentil, P., Campos, M. H., Andrade, M. S., et al. (2018). Profiling exercise intensity during the exergame Hollywood Workout on XBOX 360 Kinect®. PeerJ, 6, e5574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiemeyer, J., Deutsch, J., Malone, L. A., Rowland, J. L., Swartz, M. C., Xiong, J., et al. (2015). Recommendations for the optimal design of exergame interventions for persons with disabilities: Challenges, best practices, and future research. Games for Health Journal, 4(1), 5862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P. T., Wu, W. L., & Chu, I. H. (2015). Energy expenditure and intensity in healthy young adults during exergaming. American Journal of Health Behavior, 39(4), 557561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zangirolami-Raimundo, J., Raimundo, R. D., da Silva, T. D., de Andrade, P. E., Benetti, F. A., da Silva Paiva, L., et al. (2019). Contrasting performance between physically active and sedentary older people playing exergames. Medicine, 98(5), e14213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baracho, A. F. D. O., Gripp, F. J., & Lima, M. R. De. (2012). Exergames and the school physical education in the digital culture. Revista Brasileira de Ciências Do Esporte, 34(1), 111126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benzing, V., & Schmidt, M. (2018). Exergaming for children and adolescents: Strengths, weaknesses, opportunities and threats. Journal of Clinical Medicine, 7(11), 422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogel, V. A., Miltenberger, R. G., Graves, R., & Koehler, S. (2010). The effects of exergaming on physical activity among inactive children in a physical education classroom. Journal of Applied Behavior Analysis, 43(4), 591600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fung, V., So, K., Park, E., Ho, A., Shaffer, J., Chan, E., et al. (2010). The utility of a video game system in rehabilitation of burn and nonburn patients: A survey among occupational therapy and physiotherapy practitioners. Journal of Burn Care and Research, 31(5), 768775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graves, L. E., Ridgers, N. D., Williams, K., Stratton, G., Atkinson, G., & Cable, N. T. (2010). The physiological cost and enjoyment of Wii Fit in adolescents, young adults, and older adults. Journal of Physical Activity and Health, 7(3), 393401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Htut, T. Z. C., Hiengkaew, V., Jalayondeja, C., & Vongsirinavarat, M. (2018). Effects of physical, virtual reality-based, and brain exercise on physical, cognition, and preference in older persons: A randomized controlled trial. European Review of Aging and Physical Activity, 15(1), 10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, M. G., Laessoe, U., Hendriksen, C., Nielsen, O. B. F., & Aagaard, P. (2013). Efficacy of Nintendo Wii training on mechanical leg muscle function and postural balance in community-dwelling older adults: A randomized controlled trial. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 68(7), 845852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, D. L., Delfabbro, P. H., Billieux, J., & Potenza, M. N. (2020). Problematic online gaming and the COVID-19 pandemic. Journal of Behavioral Addictions, 9(2), 184186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, D., Koster, E., & Billieux, J. (2019). Study what makes games addictive. Nature, 573(7774), 346–346.

  • Lieberman, D. A., Chamberlin, B., Medina, E., Franklin, B. A., Sanner, B. M., Vafiadis, D. K., et al. . (2011). The power of play: Innovations in getting active summit 2011. Circulation, 123(21), 25072516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maillot, P., Perrot, A., & Hartley, A. (2012). Effects of interactive physical-activity video-game training on physical and cognitive function in older adults. Psychology and Aging, 27(3), 589600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moreira, N. B., Rodacki, A. L. F., Costa, S. N., Pitta, A., & Bento, P. C. B. (2020). Perceptive–cognitive and physical function in prefrail older adults: Exergaming versus traditional multicomponent training. Rejuvenation Research, rej.2020.2302, 17.

    • Search Google Scholar
    • Export Citation
  • Neumann, S., Meidert, U., Barberà-Guillem, R., Poveda-Puente, R., & Becker, H. (2018). Effects of an exergame software for older adults on fitness, activities of daily living performance, and quality of life. Games for Health Journal, 7(5), 341346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neves, L. E. D. S., Cerávolo, M. P. D. S., Silva, E., De Freitas, W. Z., Da Silva, F. F., Higino, W. P., et al. (2015). Cardiovascular effects of Zumba® performed in a virtual environment using XBOX Kinect. Journal of Physical Therapy Science, 27(9), 28632865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Donovan, C., Hirsch, E., Holohan, E., McBride, I., McManus, R., & Hussey, J. (2012). Energy expended playing Xbox KinectTM and WiiTM games: A preliminary study comparing single and multiplayer modes. Physiotherapy, 98(3), 224229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, W., & Crouse, J. (2013). Playing in parallel: The effects of multiplayer modes in active video game on motivation and physical exertion. Cyberpsychology, Behavior, and Social Networking, 16(6), 423427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rizzo, A. A., Lange, B., Suma, E. A., & Bolas, M. (2011). Virtual reality and interactive digital game technology: New tools to address obesity and diabetes. Journal of Diabetes Science and Technology, 5(2), 256264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodrigues, G. A. A., Felipe, D. D. S., Silva, E., De Freitas, W. Z., Higino, W. P., Da Silva, F. F., et al. (2015). Acute cardiovascular responses while playing virtual games simulated by Nintendo Wii®. Journal of Physical Therapy Science, 27(9), 28492851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staiano, A. E., Abraham, A. A., & Calvert, S. L. (2013). Adolescent exergame play for weight loss and psychosocial improvement: A controlled physical activity intervention. Obesity, 21(3), 598601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staiano, A. E., & Calvert, S. L. (2011). Wii tennis play for low-income african american adolescents’ energy expenditure. Cyberpsychology, 5(1), 4.

    • Search Google Scholar
    • Export Citation
  • Unnithan, V., Houser, W., & Fernhall, B. (2006). Evaluation of the energy cost of playing a dance simulation video game in overweight and non-overweight children and adolescents. International Journal of Sports Medicine, 27(10), 804809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viana, R. B., Alves, C. L., Vieira, C. A., Vancini, R. L., Campos, M. H., Gentil, P., et al. (2017). Anxiolytic effects of a single session of the exergame Zumba® Fitness on healthy young women. Games for Health Journal, 6(6), 365370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viana, R. B., Dankel, S. J., Loenneke, J. P., Gentil, P., Vieira, C. A., Andrade, M. dos S., et al. (2020). The effects of exergames on anxiety levels: A systematic review and meta‐analysis. Scandinavian Journal of Medicine & Science in Sports, sms.13654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viana, R. B., & de Lira, C. A. B. (2020). Exergames as coping strategies for anxiety disorders during the COVID-19 quarantine period. Games for Health Journal, 9(3), 147149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viana, R. B., Gentil, P., Andrade, M. S., Vancini, R. L., & de Lira, C. A. B. (2019). Is the energy expenditure provided by exergames valid? International Journal of Sports Medicine, 40(09), 563568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viana, R. B., Vancini, R. L., Vieira, C. A., Gentil, P., Campos, M. H., Andrade, M. S., et al. (2018). Profiling exercise intensity during the exergame Hollywood Workout on XBOX 360 Kinect®. PeerJ, 6, e5574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiemeyer, J., Deutsch, J., Malone, L. A., Rowland, J. L., Swartz, M. C., Xiong, J., et al. (2015). Recommendations for the optimal design of exergame interventions for persons with disabilities: Challenges, best practices, and future research. Games for Health Journal, 4(1), 5862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P. T., Wu, W. L., & Chu, I. H. (2015). Energy expenditure and intensity in healthy young adults during exergaming. American Journal of Health Behavior, 39(4), 557561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zangirolami-Raimundo, J., Raimundo, R. D., da Silva, T. D., de Andrade, P. E., Benetti, F. A., da Silva Paiva, L., et al. (2019). Contrasting performance between physically active and sedentary older people playing exergames. Medicine, 98(5), e14213.

    • Crossref
    • Search Google Scholar
    • Export Citation
The author instruction is available in PDF.
Please, download the file from HERE

Dr. Zsolt Demetrovics
Institute of Psychology, ELTE Eötvös Loránd University
Address: Izabella u. 46. H-1064 Budapest, Hungary
Phone: +36-1-461-2681
E-mail: jba@ppk.elte.hu

Indexing and Abstracting Services:

  • Web of Science [Science Citation Index Expanded (also known as SciSearch®)
  • Journal Citation Reports/Science Edition
  • Social Sciences Citation Index®
  • Journal Citation Reports/ Social Sciences Edition
  • Current Contents®/Social and Behavioral Sciences
  • EBSCO
  • GoogleScholar
  • PsychInfo
  • PubMed Central
  • SCOPUS
  • Medline
  • CABI

2019  
Total Cites
WoS
2 184
Impact Factor 5,143
Impact Factor
without
Journal Self Cites
4,346
5 Year
Impact Factor
5,758
Immediacy
Index
0,587
Citable
Items
75
Total
Articles
67
Total
Reviews
8
Cited
Half-Life
3,3
Citing
Half-Life
6,8
Eigenfactor
Score
0,00597
Article Influence
Score
1,447
% Articles
in
Citable Items
89,33
Normalized
Eigenfactor
0,7294
Average
IF
Percentile
87,923
Scimago
H-index
37
Scimago
Journal Rank
1,767
Scopus
Scite Score
2540/376=6,8
Scopus
Scite Score Rank
Cllinical Psychology 16/275 (Q1)
Medicine (miscellenous) 31/219 (Q1)
Psychiatry and Mental Health 47/506 (Q1)
Scopus
SNIP
1,441
Acceptance
Rate
32%

 

Journal of Behavioral Addictions
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 850 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access
Purchase per Title  

Journal of Behavioral Addictions
Language English
Size A4
Year of
Foundation
2011
Publication
Programme
2021 Volume 10
Volumes
per Year
1
Issues
per Year
4
Founder Eötvös Loránd Tudományegyetem
Founder's
Address
H-1053 Budapest, Hungary Egyetem tér 1-3.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-5871 (Print)
ISSN 2063-5303 (Online)

Senior editors

Editor(s)-in-Chief: Zsolt DEMETROVICS

Assistant Editor(s): Csilla ÁGOSTON

Associate Editors

  • Judit BALÁZS (ELTE Eötvös Loránd University, Hungary)
  • Joel BILLIEUX (University of Lausanne, Switzerland)
  • Matthias BRAND (University of Duisburg-Essen, Germany)
  • Anneke GOUDRIAAN (University of Amsterdam, The Netherlands)
  • Daniel KING (Flinders University, Australia)
  • Ludwig KRAUS (IFT Institute for Therapy Research, Germany)
  • H. N. Alexander LOGEMANN (ELTE Eötvös Loránd University, Hungary)
  • Anikó MARÁZ (Humboldt University of Berlin, Germany)
  • Astrid MÜLLER (Hannover Medical School, Germany)
  • Marc N. POTENZA (Yale University, USA)
  • Hans-Jurgen RUMPF (University of Lübeck, Germany)
  • Attila SZABÓ (ELTE Eötvös Loránd University, Hungary)
  • Róbert URBÁN (ELTE Eötvös Loránd University, Hungary)
  • Aviv M. WEINSTEIN (Ariel University, Israel)

Editorial Board

  • Max W. ABBOTT (Auckland University of Technology, New Zealand)
  • Elias N. ABOUJAOUDE (Stanford University School of Medicine, USA)
  • Hojjat ADELI (Ohio State University, USA)
  • Alex BALDACCHINO (University of Dundee, United Kingdom)
  • Alex BLASZCZYNSKI (University of Sidney, Australia)
  • Kenneth BLUM (University of Florida, USA)
  • Henrietta BOWDEN-JONES (Imperial College, United Kingdom)
  • Beáta BÖTHE (University of Montreal, Canada)
  • Wim VAN DEN BRINK (University of Amsterdam, The Netherlands)
  • Gerhard BÜHRINGER (Technische Universität Dresden, Germany)
  • Sam-Wook CHOI (Eulji University, Republic of Korea)
  • Damiaan DENYS (University of Amsterdam, The Netherlands)
  • Jeffrey L. DEREVENSKY (McGill University, Canada)
  • Naomi FINEBERG (University of Hertfordshire, United Kingdom)
  • Marie GRALL-BRONNEC (University Hospital of Nantes, France)
  • Jon E. GRANT (University of Minnesota, USA)
  • Mark GRIFFITHS (Nottingham Trent University, United Kingdom)
  • Heather HAUSENBLAS (Jacksonville University, USA)
  • Tobias HAYER (University of Bremen, Germany)
  • Susumu HIGUCHI (National Hospital Organization Kurihama Medical and Addiction Center, Japan)
  • David HODGINS (University of Calgary, Canada)
  • Eric HOLLANDER (Albert Einstein College of Medicine, USA)
  • Jaeseung JEONG (Korea Advanced Institute of Science and Technology, Republic of Korea)
  • Yasser KHAZAAL (Geneva University Hospital, Switzerland)
  • Orsolya KIRÁLY (Eötvös Loránd University, Hungary)
  • Emmanuel KUNTSCHE (La Trobe University, Australia)
  • Hae Kook LEE (The Catholic University of Korea, Republic of Korea)
  • Michel LEJOXEUX (Paris University, France)
  • Anikó MARÁZ (Eötvös Loránd University, Hungary)
  • Giovanni MARTINOTTI (‘Gabriele d’Annunzio’ University of Chieti-Pescara, Italy)
  • Frederick GERARD MOELLER (University of Texas, USA)
  • Daniel Thor OLASON (University of Iceland, Iceland)
  • Nancy PETRY (University of Connecticut, USA)
  • Bettina PIKÓ (University of Szeged, Hungary)
  • Afarin RAHIMI-MOVAGHAR (Teheran University of Medical Sciences, Iran)
  • József RÁCZ (Hungarian Academy of Sciences, Hungary)
  • Rory C. REID (University of California Los Angeles, USA)
  • Marcantanio M. SPADA (London South Bank University, United Kingdom)
  • Daniel SPRITZER (Study Group on Technological Addictions, Brazil)
  • Dan J. STEIN (University of Cape Town, South Africa)
  • Sherry H. STEWART (Dalhousie University, Canada)
  • Attila SZABÓ (Eötvös Loránd University, Hungary)
  • Ferenc TÚRY (Semmelweis University, Hungary)
  • Alfred UHL (Austrian Federal Health Institute, Austria)
  • Johan VANDERLINDEN (University Psychiatric Center K.U.Leuven, Belgium)
  • Alexander E. VOISKOUNSKY (Moscow State University, Russia)
  • Kimberly YOUNG (Center for Internet Addiction, USA)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 0 0 0
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 73 26
May 2021 0 129 123
Jun 2021 0 107 110
Jul 2021 0 0 0