Authors:
Małgorzata Draps Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland

Search for other papers by Małgorzata Draps in
Current site
Google Scholar
PubMed
Close
,
Natalia Kowalczyk-Grębska Faculty of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland

Search for other papers by Natalia Kowalczyk-Grębska in
Current site
Google Scholar
PubMed
Close
,
Artur Marchewka Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland

Search for other papers by Artur Marchewka in
Current site
Google Scholar
PubMed
Close
,
Feng Shi Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA

Search for other papers by Feng Shi in
Current site
Google Scholar
PubMed
Close
, and
Mateusz Gola Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
Swartz Center for Computational Neuroscience, Institute for Neural Computations, University of California San Diego, San Diego, USA

Search for other papers by Mateusz Gola in
Current site
Google Scholar
PubMed
Close
Open access

Abstract

Background and aims

Even though the Compulsive Sexual Behavior Disorder (CSBD) was added to the ICD-11 under the impulse control category in 2019, its neural mechanisms are still debated. Researchers have noted its similarity both to addiction and to Obssesive-Compulsive Disorder (OCD). The aim of our study was to address this question by investigating the pattern of anatomical brain abnormalities among CSBD patients.

Methods

Reviewing 39 publications on Diffusion Tensor Imaging (DTI) we have identified main abnormalities specific for addictions and OCD. Than we have collected DTI data from 36 heterosexual males diagnosed with CSBD and 31 matched healthy controls. These results were then compared to the addiction and OCD patterns.

Results

Compared to controls, CSBD individuals showed significant fractional anisotropy (FA) reduction in the superior corona radiata tract, the internal capsule tract, cerebellar tracts and occipital gyrus white matter. Interestingly, all these regions were also identified in previous studies as shared DTI correlates in both OCD and addiction.

Discussion and conclusions

Results of our study suggest that CSBD shares similar pattern of abnormalities with both OCD and addiction. As one of the first DTI study comparing structural brain differences between CSBD, addictions and OCD, although it reveals new aspects of CSBD, it is insufficient to determine whether CSBD resembles more an addiction or OCD. Further research, especially comparing directly individuals with all three disorders may provide more conclusive results.

Abstract

Background and aims

Even though the Compulsive Sexual Behavior Disorder (CSBD) was added to the ICD-11 under the impulse control category in 2019, its neural mechanisms are still debated. Researchers have noted its similarity both to addiction and to Obssesive-Compulsive Disorder (OCD). The aim of our study was to address this question by investigating the pattern of anatomical brain abnormalities among CSBD patients.

Methods

Reviewing 39 publications on Diffusion Tensor Imaging (DTI) we have identified main abnormalities specific for addictions and OCD. Than we have collected DTI data from 36 heterosexual males diagnosed with CSBD and 31 matched healthy controls. These results were then compared to the addiction and OCD patterns.

Results

Compared to controls, CSBD individuals showed significant fractional anisotropy (FA) reduction in the superior corona radiata tract, the internal capsule tract, cerebellar tracts and occipital gyrus white matter. Interestingly, all these regions were also identified in previous studies as shared DTI correlates in both OCD and addiction.

Discussion and conclusions

Results of our study suggest that CSBD shares similar pattern of abnormalities with both OCD and addiction. As one of the first DTI study comparing structural brain differences between CSBD, addictions and OCD, although it reveals new aspects of CSBD, it is insufficient to determine whether CSBD resembles more an addiction or OCD. Further research, especially comparing directly individuals with all three disorders may provide more conclusive results.

Introduction

The Compulsive Sexual Behaviors Disorder (CSBD) introduced by World Health Organization (WHO) in 11th edition of International Classification of Diseases (ICD-11) is a psychiatric disorder characterized by repeated failure to resist urges for sexual activity. Initially, these activities are rewarding for the patient, but after a while they become harmful and dysfunctional, resulting with high degree of personal distress. To meet CSBD diagnostic criteria, the patient must exhibit above mentioned symptoms for at least 6 months, and diagnosis cannot be made if no severe distress in personal life is reported or if the distress is related only to moral judgment and disapproval of sexual behavior, for example, based on religious/moral beliefs (Kraus et al., 2018; WHO, 2019). The criteria of CSBD proposed by WHO in large extend were based on criteria for hypersexual disorder (HD) proposed by Kafka (2010) for consideration in the sexual disorders section of DSM-V. Similarly to HD, CSBD was conceptualized as a compulsive nonparaphilic sexual desire disorder with an impulsivity component, resembling addiction, however unlike HD, CSBD the abandons criterion of stress and emotional regulation (resembling OCD) (for detailed discussion see: Gola et al., 2020).

WHO classified CSBD (in the ICD-11) as an impulse control disorder, but the aspect of compulsiveness is included in the name of the disorder. Unfortunately, the impulse control disorder category is very broad and its boundaries cannot be sharply defined, which makes CSBD's classification the subject of continued debate, centering on the question of whether the symptoms of CSBD are impulsive or compulsive in their nature, or whether CSBD should rather be considered an expression of behavioral addiction (e.g., Bőthe et al., 2019; Gola et al., 2017; Griffiths, 2016; Kraus, Voon, & Potenza, 2016; Kühn & Gallinat, 2016; Potenza, Gola, Voon, Kor, & Kraus, 2017; Young, 2008) or some other type of psychiatric disorder. When arguing for its similarity to addiction, researchers often mention appetitive mechanisms and craving for sexual activity (Gola & Draps, 2018; Gola et al., 2017; Klucken, Wehrum-Osinsky, Schweckendiek, Kruse, & Stark, 2016; Kowalewska et al., 2018; Voon et al., 2014), the growing tolerance and escalation of symptoms, so typical of substance dependence (Reid et al., 2012; Wordecha et al., 2018), and the withdrawal syndrome (Garcia & Thibaut, 2010). On the other hand, CSBD is also compared to Obsessive-Compulsive Disorder (OCD), as it can exhibit cycles of negative, obsessive thoughts accompanied by compulsions, i.e. rituals, repetitive behaviors that reduce tension caused by obsessive thoughts, engaged in to prevent or reduce stress or anxiety (Deacon & Abramowitz, 2005; Fineberg et al. 2014). Sexual behaviors may play a role in coping strategies for emotional regulation (Lew-Starowicz, Lewczuk, Nowakowska, Kraus, & Gola, 2020) According to Coleman and colleagues (2003), CSBD patients experience repetitive thoughts of sexual nature that cause tension (obsession), and engage in compulsive sexual behaviors to reduce this tension (Coleman, Raymond, & McBean, 2003). In this way, sexual behavior can be understood as a manifestation of compulsiveness (Mick & Hollander, 2006) and sexual behavior plays a role of emotional regulation strategy (Kafka, 2010; Miner, Dickenson, & Coleman, 2019; Reid & Kafka, 2014). Currently this coping function is a subject of discussion in the context of CSBD, as it was now included in the WHO's criteria (Gola et al., 2020).

There is growing body of evidences speaking in favor of neurobiological similarities between CSBD and addictions, e.g., erotic-related reactivity of reward system (for review see: Gola & Draps, 2018 or Kowalewska et al., 2018). Among the most interesting effects are: increased ventral striatal reactivity for preferred erotic pictures (compared with non-preferred pictures) positively correlated with results in the Internet Addiction Test Modified for Cybersex (Brand, Snagowski, Laier, & Maderwald, 2016), or greater activations within: dorsolateral prefrontal cortex, caudate, inferior supramarginal gyrus of the parietal lobe, dorsal anterior cingulate cortex and thalamus, for erotic cues among CSBD individuals when compared to controls (Seok & Sohn, 2015). CSBD individuals also demonstrated increased striatal reactivity (compared to controls) for sexually explicit videos (Voon et al., 2014) or erotic but not monetary cues (Gola et al., 2017) and decreased functional connectivity between the ventral striatum and the prefrontal cortex (Klucken et al., 2016), as well as significant negative correlation between the severity of CSBD symptoms and functional connectivity between the left superior temporal gyrus and the right caudate nucleus (Seok & Sohn, 2018). Regarding structural brain effects related to the CSBD, Kühn and Gallinat (2014) found an inverse relationship between right caudate volumetry and frequency of pornography consumption among non-clinical pornography users. Recent study from our group (Draps et al., 2020) showed that individuals with CSBD, alcohol addiction and gambling disorder share smaller gray matter volume in the left frontal pole (specifically in the orbitofrontal cortex) when compared to healthy subjects. The abovementioned data support the hypothesis on the similarities between CSBD and addictions. Unfortunately, there are no available neurobiological studies comparing CSBD to OCD.

One way of studying potential similarities between CSBD and addiction or OCD is to look at the brain's white matter microstructure. Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging technique sensitive to microstructural tissue properties, allowing the qualitative assessment of white matter tracts (Basser & Jones, 2002; Guevara, Guevara, Román, & Mangin, 2020; Le Bihan, 2003; Le Bihan et al., 2001). There are many DTI techniques, for instance the Tract-Based Spatial Statistics (TBSSs) method widely used to detect white matter abnormalities in humans (Smith et al., 2006), which focuses specifically on differences in fractional anisotropy (FA). In TBSS analysis the nonlinear registration algorithm is used to project individual data onto mean tract representation, called the mean FA skeleton. We have found 39 publications on OCD (31) and addiction (8) using TBSS. In these studies, authors showed FA differences between total 1,050 healthy controls and 1,188 adult patients clinically diagnosed with OCD or addiction disorder. The smallest groups of participants were respectively: 22 in the addiction (Chumin et al., 2019) and eight in the OCD group (Cannistraro et al., 2007). Twenty-eight studies reported significant results with P < 0.05 after correction for multiple comparisons and 6 with uncorrected P < 0.001, with cluster size of 20 or more voxels. Regional diversity was more highly pronounced in OCD, with results suggesting main FA differences in several tracts such as corpus callosum, cingulum bundle, forceps minor and corona radiata. The results were sparser in addictions, with fewer regions differentiating between patient and control groups. Interestingly, nine regions (viz. superior corona radiata, internal capsule, cerebellum, occipital and frontal white matter, superior fasciculus, posterior thalamic radiata, corpus callosum and thalamus) were revealed as DTI correlates both, for OCD and addictions (see Fig. 1).

Fig. 1.
Fig. 1.

Results of literature review. Fractional anisotropy (FA) reductions specific for Addiction (blue), FA reductions specific for OCD (green), and regions differentiating both Addiction and OCD patients from healthy controls (yellow)

Citation: Journal of Behavioral Addictions 10, 1; 10.1556/2006.2021.00002

In our study we aimed to (1) identify FA abnormalities specific for OCD and addictions through the literature review, (2) collect DTI data from CSBD patients and healthy controls (using TBSS method to identify differences in FA), and (3) compare our results with previously reported findings on OCD and addictions, to identify similarities or/and differences between OCD, addictions and CSBD.

Methods

The DTI study

Subjects and recruitment

The sample consisted of 67 heterosexual males divided into two groups: 36 CSBD patients and 31 healthy controls (HCs). Subjects were matched by age and income (see detail information in Table 1). CSBD subjects were recruited among men seeking treatment in clinics in Warsaw, Poland. They were interviewed by psychiatrists and psychologists to confirm the diagnosis according to Kafka's HD criteria (Kafka, 2010). All of them met four out of five A criteria, and also fulfilled B and C criteria (Kafka, 2014). HC were recruited through online announcements, and exhibited no psychopathological symptoms and were in good health. Exclusion criteria for both groups were a history of other psychiatric disorders, neurological or medical serious issues, and contraindication for magnetic resonance imaging (MRI) procedures. All participants completed questionnaires measuring CSBD symptoms: the Sexual Addiction Screening Test (Polish version: SAST-PL-M: Gola et al., 2016) and the Brief Pornography Screen (Kraus et al., 2020). During recruitment participants were also screened for sexual orientation, history of alcohol abuse and gambling problems. The inclusion criteria for both groups were: exclusively or predominantly heterosexual on the Kinsey Scale (Polish adaptation: Wierzba et al., 2015); scores <10 on the Alcohol Use Disorder Identification Test (Babor, de la Fuente, Saunders, & Grant, 1989); and scores <4 on the South Oaks Gambling Screen (Stinchfield, 2002). Eligible participants were invited to visit the Laboratory of Brain Imaging of Nencki Institute, PAS (Warsaw, Poland) for the data collection.

Table 1.

Participants characteristic

CSBD (mean [sd]); n = 36HC (mean [sd]); n = 31P-value
Age in years31.11 [6.018]31.84 [7.142]NS
Sexual addiction screening test – revised11.63 [4.664]2.67 [1.918]P < 0.001
Brief pornography screen6 [2.854]1.73 [1.929]P < 0.001
South oaks gambling screen0.33 [0.816]0NS
Alcohol use disorder identification test7.5 [2.07]4 [1.414]P = 0.013
Obsessive-Compulsive Inventory –revised17.18 [10.825]13.1 [8.786]NS
Monetary Choice Questionnaire – overall K value0.0249 [0.0429]0.0307 [0.0481]NS

DTI Scanning protocol

All DTI images were collected on a 3-Tesla MRI scanner (Siemens Magnetom Trio TIM, Erlangen, Germany) equipped with a 12-channel phased array head coil. The Spin-echo diffusion weighted echo planar imaging (DW_EPI) sequence was performed with following parameters: TR = 8,300 ms; TE = 87 ms; GRAPPA; flip angle 90°, voxel size = 2 × 2 × 2 mm3, 64 gradient directions with b-value of 1,000 s/mm2, along with two images with no diffusion gradient applied (b-value = 0). The DW_EPI sequence was repeated in opposite phase encoding directions anterior-posterior (A-P) and with posterior-anterior (P-A).

DTI image processing

The DTI images were processed with the FSL (3.2.0) package from the FMRIB Software Library (FSL, www.fmrib.ox.ac.uk/fsl) (Smith et al., 2004). First, FSL's fslroi command was used to extract the b0 images. In the next step, data was preprocessed using the corrections for susceptibility (topup) function on the basis of two b0 images acquired in opposite phase encoding directions. The acquisitions for AP and PA directions were merged into a single four-dimensional file. Using the FSL Brain Extraction Tool (bet), all non-brain voxels and all voxels with only a small partial volume contribution were excluded from the magnitude image. Conventional motion and eddy-current correction was performed with FSL's eddy tool. To fit a diffusion tensor model at each voxel, FA images were calculated with dtifit.

The TBSS pipeline consisted of the following standard steps (Smith et al., 2006): (1) DTI-derived FA images were co-registered to a template. The FMRIB58_FA standard-space image was used as target in TBSS. (2) Next, the nonlinear transforms calculated in the previous step were applied to all subjects to bring their data into the 1x1x1 MNI152 standard space. (3) The mean FA and skeleton from the subjects participating in the study were calculated. (4) Thresholding the mean FA skeleton image at the 0.2 level was applied to identify the major white matter pathways.

Statistical Analyses of the DTI data

For TBSS, voxelwise general linear model analysis was performed on whole brain data, using 1,000 random permutations to find the FA skeleton voxels with a significant difference between the healthy controls and the CSBD group. A two-group difference model adjusted for age (mean centered within group) was used. No voxels survived the FDR (false discovery rate) correction for multiple comparisons. Uncorrected analysis was also performed, with threshold values of P ranging from 0.05 to 0.01 and significant cluster size >50 voxels. Calculations of false discovery rate (FDR) correction were carried out using Matlab script from Genovese, Lazar, & Nichols, (2002). Areas of significant difference under uncorrected threshold of P < 0.02 with a 50-voxel extent are presented below. The anatomical regions in the skeleton showing significant group differences in the tensor derived parameter (mean FA) were then identified and labeled according to structures defined in the white matter (WM) Atlas (Oishi, Faria, Van Zijl, & Mori, 2010). Those anatomical regions were used to run correlation analysis with symptoms measured by the Sexual Addiction Screening Test (Gola et al., 2016) and the Brief Pornography Screen (Kraus et al., 2020) in the CSBD group.

Ethics

The participants' informed consent was obtained at the beginning of the study. To ensure anonymity, a double-blind procedure was employed, so that members of the research team responsible for acquiring DTI data had no access to recruitment records and did not know whether any given individual was in the CSBD or the HC group. All the procedures were carried out in accordance with the Declaration of Helsinki. The study was approved by the local ethics committee of Institute of Psychology, PAS.

Results

The participants

Table 1 contains information about the 36 individuals with CSBD and the 31 matched controls, whose DTI data was analyzed in this study. There were no between-group differences in the mean age. CSBD patients obtained significantly higher scores on scales measuring CSBD severity (SAST-R: t = 9.738 P < 0.001; BPS: t = 6.623 P<0.001). For all participants, the scores measuring addiction symptoms were below threshold (AUDIT: t = 3.012 P = 0.013, SOGS: t = 0.81 P < 0.001). CSBD patients scored significantly higher than controls in the Alcohol Use Disorder Identification Test (Babor et al., 1989), but none exceeded the alcohol use disorder threshold (16 points). Groups did not differ at the Obsessive-Compulsive Inventory-Revised (t = 1.580, P = 0.12; OCI-R, Foa et al., 2002) and Monetary Choice Questionnaire (t = −0.482, P = 0.632; MCQ, Kirby & Marakovic, 1996) measuring impulsivity and discounting (Marcowski et al., in press).

DTI results

We found significant group differences in six anatomical clusters (all results are uncorrected, with threshold values for P from 0.05 to 0.01 and size of significant cluster of at least 50 voxels). According to the White Matter Atlas (Oishi et al., 2010), these clusters contain the following regions: three tracts in cerebellum, retrolenticular part of the internal capsule tract, superior part of the corona radiata tract and part of the occipital gyrus white matter (details in Table 2 and Fig. 2). There was no significant correlation between individual mean FA in the six anatomical regions and the severity of CSBD symptoms, as measured by the Sexual Addiction Screening Test (Gola et al., 2016) and Brief Pornography Screen (Kraus et al., 2020). This was unexpected, since, according to the literature on psychiatric disorders such as addiction and OCD, the severity of symptoms is often correlated with differences in FA (for addiction, see: Morales, Jones, Harman, Patching-Bunch, & Nagel, 2020; De Santis et al., 2019; and for OCD: de Salles Andrade et al., 2019; Fitzgerald, Liu, Reamer, Taylor, & Welsh, 2014; Koch et al., 2012; Saito et al., 2008; Wang et al., 2018; Zhou et al., 2018).

Table 2.

Results from DTI study comparing 36 CSBD patients with 31 matched healthy controls

IndexCluster sizexyzT-stat value of the peakP value of the peakEffect sizeaTract–name from Atlas
16130−45−285.31030.0000277761.290118ch, cerebellar hemisphere
265−17−49−205.16510.0000461341.071367ch, cerebellar hemisphere
38824−51−205.08230.0000613931.015533ch, cerebellar hemisphere
46433−2965.17380.0000447631.125174rlic, retrolenticular part of internal capsule
552−40−62204.99490.0000827311.151454O2-WM, middle or lateral occipital gyrus white matter
671−2514284.12360.00132670.829666scr, superior corona radiata

Cohen's d effect size were calculated as a mean difference between two groups divided by the pooled standard deviation.

Fig. 2.
Fig. 2.

Differences in fractional anisotropy (FA) between CSBD patients and controls. Mean FA skeleton across all subjects is shown in green over the FMRIB58_FA_1mm template. Results have been thickened for visualization purposes using the standard tbss_fill FSL command. Clusters with higher FA values (P < 0.02, clusters size >50) in the control group in comparison to CSBD patients is shown in red. There were no significant results for reverse contrast (CSBD patients > control group)

Citation: Journal of Behavioral Addictions 10, 1; 10.1556/2006.2021.00002

Discussion

This is one of the first DTI studies assessing differences between patients with the Compulsive Sexual Behaviors Disorder and healthy controls. Our analysis has uncovered FA reductions in six regions of the brain in CSBD subjects, compared to controls. The differentiating tracts were found in the cerebellum (there were probably parts of the same tract in the cerebellum), the retrolenticular part of the internal capsule, the superior corona radiata and the middle or lateral occipital gyrus white matter.

To look at these results in the wider context of the entire spectrum of impulsive and compulsive psychiatric disorders, from addiction at one extreme to OCD at the other, we conducted a comprehensive review of literature on DTI in both of the above-mentioned clinical entities. The thirty-nine studies (eight on addiction and 31 on OCD) available in the literature have shown that, as far as DTI is concerned, there is less neuronal diversity in addiction than in OCD. In the OCD literature, the main and frequently reported result concerns a reduction in FA in such regions as the corpus callosum and the cingulum bundle (Benedetti et al., 2013; Bora et al., 2011; Cannistraro et al., 2007; de Salles Andrade et al., 2019; Fan et al., 2016; Gan et al., 2017; Garibotto et al., 2010; Li et al., 2011; Nakamae et al., 2011; Oh et al., 2012; Saito et al., 2008; Spalletta, Piras, Fagioli, Caltagirone, & Piras, 2014; Versace et al., 2019; Yoo et al., 2007; Zhou et al., 2018). In contrast, the addictions literature mentions the posterior corona radiata, external capsule, fornix, insula and hippocampus as the regions that differentiate patients and controls in terms of mean FA (Chumin et al., 2019; De Santis et al., 2019; Pandey et al., 2018; Yip et al., 2017; Zou et al., 2017), as well as other regions found in OCD, i.e., the superior corona radiata, internal capsule, cerebellum, frontal and occipital white matter, superior fasciculus, posterior thalamic radiata, corpus callosum and thalamus (Benedetti et al., 2013; Cannistraro et al., 2007; Chumin et al., 2019; Fan et al., 2012; Fontenelle et al., 2011; Gan et al., 2017; Hartmann, Vandborg, Rosenberg, Sørensen, & Videbech, 2016; Kim, Jung, Kim, Jang, & Kwon, 2015; Lochner et al., 2012; Pandey et al., 2018; Segobin et al., 2019; Szeszko et al., 2005; Yip et al., 2017; Yoo et al., 2007; Zhong et al., 2019; Zou et al., 2017). Other regions found in OCD sudies are in green area in Figs. 1 and 3 (Glahn, Prell, Grosskreutz, Peschel, & Müller-Vahl, 2015; He et al., 2018; Li, Ji, Li, Li, & Feng, 2014; Menzies et al., 2008; Nakamae et al., 2008; Segobin et al., 2019).

Our DTI data shows that the neural correlates of CSBD overlap with regions previously reported in the literature as related both, to addiction and OCD (see the red area in Fig. 3). Thus, the present study demonstrated an important similarity in shared FA reductions between CSBD and both OCD and addictions. Unfortunately, these results do not indicate which of these two clinical entities is closer to CSBD in terms of DTI correlates.

Fig. 3.
Fig. 3.

Overlapping results from literature review on fractional anisotropy (FA) in Addiction and OCD, and results of our DTI study on CSBD patients. FA reductions specific for Addiction (blue), FA reductions specific for OCD (green), regions differentiating both Addiction and OCD patients from healthy controls (yellow), and regions differentiating CSBD patients from healthy controls (red): 3 tracts in cerebellum, retrolenticular part of the internal capsule tract, superior part of the corona radiata tract and part of the occipital gyrus white matter

Citation: Journal of Behavioral Addictions 10, 1; 10.1556/2006.2021.00002

Limitations

While the present study delivered new data on white matter differences in brain diffusivity in CSBD, its results have some limitations. The main limitation is typical to this kind of correlational study, and concerns the fact that the observed reduction in difference in mean FA between the two samples could be a pre-existing factor or the result of the development of CSBD. This problem affects many other studies of anatomical or functional brain differences using a cross sectional design (Yuan et al., 2010). A longitudinal design is needed to evaluate the role of brain changes as they relate to the development and progression of CSBD symptoms.

Another limitation relates to the recruitment of CSBD participants, which was due to the Hypersexual Disorder (HD; Kafka, 2010), not ICD-11 criteria, as our data were collected before the release of the new WHO's manual. Criteria relating to stress and emotional regulation are present among HD, but not CSBD description (see Gola et al., 2020), therefore our clinical sample might have resemble more an OCD population. More importantly, our sample was relatively small and all the groups consisted of exclusively heterosexual males of similar age, residents of Poland. In future studies of the neurobiological basis of CSBD, larger and more diversified samples need to be recruited. The small sample size could be the reason why our results did not survive the classic FWE correction, and this is yet another limitation of the study. Also, a direct comparison to individuals with addiction and OCD (rather than merely to results reported in the literature) might support stronger conclusions in future studies.

Conclusions

Results of our study suggest that CSBD shares similar pattern of abnormalities with both OCD and addiction. Compared to controls, CSBD individuals showed significant FA reduction in the superior corona radiata tract, the internal capsule tract, cerebellar tracts and occipital gyrus white matter. As one of the first DTI study comparing structural brain differences between CSBD, addictions and OCD, although it reveals new aspects of CSBD, it is insufficient to determine whether CSBD resembles more an addiction or OCD. Further research, especially comparing directly individuals with all three disorders may provide more conclusive results.

Funding sources

Data collection was supported by the Polish National Science Centre - NCN - grant (2014/15/B/HS6/03792) to MG. MG was supported by gift grant of the Swartz Foundation to the Swartz Center for Computational Neuroscience. NK was supported also by the Foundation of Polish Science (FNP) and Kosciuszko Foundation. MD was supported also by the Polish National Agency for Academic Exchange – NAWA – The Iwanowska Programme (PPN/IWA/2018/1/00018).

Authors' contribution

MD contributed to methods design, subjects recruitment, conducting data collection, data analysis and interpretation, manuscript writing. NK contributed to conducting data analysis and interpretation, manuscript writing. FS contributed to data analysis's consultation, involved in writing manuscript. AM contributed to study and methods design, involved in writing manuscript. MG contributed to study and methods design, data interpretation, manuscript writing, obtaining funding. All authors contributed to and have approved the final manuscript.

Conflict of interest

The authors declare no conflicts of interest with respect to the content of this manuscript.

Acknowledgments

We are grateful to all participants who agreed to be involved in this study.

References

  • Babor, T. F., de la Fuente, R. J., Saunders, J., & Grant, M, (1989). AUDIT. The alcohol use disorders identyfication test. Guidelines for use in primary Health care. Genewa: World Health Organization.

    • Search Google Scholar
    • Export Citation
  • Basser, P. J., & Jones, D. K., (2002). Diffusion-tensor MRI: theory, experimental design and data analysis – A technical review. NMR in Biomedicine, 15(7), 456467. https://doi.org/10.1002/nbm.783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedetti, F., Giacosa, C., Radaelli, D., Poletti, S., Pozzi, E., Dallaspezia, S., et al. (2013). Widespread changes of white matter microstructure in obsessive–compulsive disorder: Effect of drug status. European Neuropsychopharmacology, 23(7), 581593. https://doi.org/https://doi.org/10.1016/j.euroneuro.2012.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bora, E., Harrison, B. J., Fornito, A., Cocchi, L., Pujol, J., Fontenelle, L. F., et al. (2011). White matter microstructure in patients with obsessive-compulsive disorder. Journal of Psychiatry & Neuroscience: JPN, 36(1), 4246. https://doi.org/10.1503/jpn.100082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brand, M., Snagowski, J., Laier, C., & Maderwald, S. (2016). Ventral striatum activity when watching preferred pornographic pictures is correlated with symptoms of internet pornography addiction. NeuroImage, 129, 224232 https://doi.org/10.1016/j.neuroimage.2016.01.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bőthe, B., Tóth-Király, I., Potenza, M. N., Griffiths, M. D., Orosz, G., & Demetrovics, Z. (2019). Revisiting the role of impulsivity and compulsivity in problematic sexual behaviors. The Journal of Sex Research, 56(2), 166179. https://doi.org/10.1080/00224499.2018.1480744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannistraro, P. A., Makris, N., Howard, J. D., Wedig, M. M., Hodge, S. M., Wilhelm, S., et al. (2007). A diffusion tensor imaging study of white matter in obsessive–compulsive disorder. Depression and Anxiety, 24, 440446. https://doi.org/10.1002/da.20246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chumin, E. J., Grecco, G. G., Dzemidzic, M., Cheng, H., Finn, P., Sporns, O., et al. (2019), Alterations in white matter microstructure and connectivity in Young adults with alcohol use disorder. Alcoholism: Clinical and Experimental Research, 43, 11701179. https://doi.org/10.1111/acer.14048.

    • Search Google Scholar
    • Export Citation
  • Coleman, E., Raymond, N., & McBean, A. (2003). Assessment and treatment of compulsive sexual behavior. Minnesota Medicine, 86(7), 4247.

    • Search Google Scholar
    • Export Citation
  • De Santis, S., Bach, P., Pérez-Cervera, L., Cosa-Linan, A., Weil, G., Vollstädt-Klein, S., et al. (2019). Microstructural white matter alterations in men with alcohol use disorder and rats with excessive alcohol consumption during early abstinence. JAMA Psychiatry, 76(7), 749758. https://doi.org/10.1001/jamapsychiatry.2019.0318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deacon, B. J., & Abramowitz, J. S. (2005). The Yale-Brown Obsessive-Compulsive Scale: Factor analysis, construct validity, and suggestions for refinement. Journal of Anxiety Disorders, 19, 573585. https://doi.org/10.1016/j.janxdis.2004.04.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draps, M., Sescousse, G., Potenza, M. N., Marchewka, A., Duda, A., Lew-Starowicz, M., et al. (2020). Gray matter volume differences in impulse control and addictive disorders—an evidence from a sample of heterosexual males. The Journal of Sexual Medicine, 17(9), 17611769. https://doi.org/10.1016/j.jsxm.2020.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, S., van den Heuvel, O. A., Cath, D. C., van der Werf, Y. D., de Wit, S. J., de Vries, F. E., et al. (2016). Mild white matter changes in un-medicated obsessive-compulsive disorder patients and their unaffected siblings. Frontiers in Neuroscience, 9, 495. https://doi.org/10.3389/fnins.2015.00495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Q., Yan, X., Wang, J., Chen, Y., Wang, X., Li, C., et al. (2012). Abnormalities of white matter microstructure in unmedicated obsessive-compulsive disorder and changes after medication. Plos One, 7(4), e35889. https://doi.org/10.1371/journal.pone.0035889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fineberg, N. A., Chamberlain, S. R., Goudriaan, A. E., Stein, D. J., Vanderschuren, L. J., Gillan, C. M., et al. (2014). New developments in human neurocognition: Clinical, genetic, and brain imaging correlates of impulsivity and compulsivity. CNS Spectrums, 19, 6989. https://doi.org/10.1017/S1092852913000801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzgerald, K. D., Liu, Y., Reamer, E. N., Taylor, S. F., & Welsh, R. C. (2014). Atypical frontal-striatal-thalamic circuit white matter development in pediatric obsessive-compulsive disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 53(11), 12251233. https://doi.org/10.1016/j.jaac.2014.08.010. .

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Foa, E. B., Huppert, J. D., Leiberg, S., Hajcak, G., Langner, R., & Kichic, R., et al. (2002). The obsessive compulsive inventory: Development and validation of a short version. Psychological Assessment, 14, 485496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fontenelle, L., Bramati, I., Moll, J., Mendlowicz, M., De Oliveira-Souza, R., & Tovar-Moll, F. (2011). White matter changes in OCD revealed by diffusion tensor imaging. CNS Spectrums, 16(5), 101109. https://doi.org/10.1017/S1092852912000260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gan, J., Zhong, M., Fan, J., Liu, W., Niu, C., Cai, S., et al. (2017). Abnormal white matter structural connectivity in adults with obsessive-compulsive disorder. Translational Psychiatry, 7(3), e1062. https://doi.org/10.1038/tp.2017.22.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, F. D., & Thibaut, F. (2010). Sexual addictions. The American Journal of Drug and Alcohol Abuse, 36, 254260. https://doi.org/10.3109/00952990.2010.503823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garibotto, V., Scifo, P., Gorini, A., Alonso, C. R., Brambati, S., Bellodi, L., et al. (2010). Disorganization of anatomical connectivity in obsessive compulsive disorder: A multi-parameter diffusion tensor imaging study in a subpopulation of patients. Neurobiology of Disease, 37(2), 468476. https://doi.org/https://doi.org/10.1016/j.nbd.2009.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage, 15(4), 870878. https://doi.org/10.1006/nimg.2001.1037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glahn, A., Prell, T., Grosskreutz, J., Peschel, T., & Müller-Vahl, K. R. (2015). Obsessive-compulsive disorder is a heterogeneous disorder: Evidence from diffusion tensor imaging and magnetization transfer imaging. BMC Psychiatry, 15, 135. https://doi.org/10.1186/s12888-015-0535-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gola, M., & Draps, M. (2018). Ventral striatal reactivity in compulsive sexual behaviors. Frontiers in Psychiatry, 9, 546.

  • Gola, M., Lewczuk, K., Potenza, M. N., Kingston, D. A., Grubbs, J., Stark, R., et al. (2020). What should be included in the criteria for compulsive sexual behaviour disorder? Journal of Behavioral Addictions. https://doi.org/10.1556/2006.2020.00090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gola, M., Skorko, M., Kowalewska, E., Kołodziej, A., Sikora, M., Wodyk, M., et al. (2016). Polska adaptacja testu przesiewowego na uzależnienie od zachowań seksualnych (Sexual Addiction Screening Test - Revised). SAST-PL-M. Psychiatria Polska. https://doi.org/10.12740/PP/OnlineFirst/6141.

    • Search Google Scholar
    • Export Citation
  • Gola, M., Wordecha, M., Sescousse, G., Lew-Starowicz, M., Kossowski, B., Wypych, M., et al. (2017). Can pornography be addictive? An fMRI study of men seeking treatment for problematic pornography use. Neuropsychopharmacology, 42, 2021. https://doi.org/10.1038/npp.2017.78.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffiths, M. D. (2016). Compulsive sexual behaviour as a behavioural addiction: The impact of the internet and other issues. Addiction, 111, 21072108. https://doi.org/10.1111/add.13315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guevara, M., Guevara, P., Román, C., & Mangin, J. F. (2020). Superficial white matter: A review on the dMRI analysis methods and applications. Neuroimage, 116673. https://doi.org/10.1016/j.neuroimage.2020.116673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, T., Vandborg, S., Rosenberg, R., Sørensen, L., & Videbech, P. (2016). Increased fractional anisotropy in cerebellum in obsessive–compulsive disorder. Acta Neuropsychiatrica, 28(3), 141148. https://doi.org/10.1017/neu.2015.57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, X., Steinberg, E., Stefan, M., Fontaine, M., Simpson, H. B., Marsh, R. (2018). Altered frontal interhemispheric and fronto‐limbic structural connectivity in unmedicated adults with obsessive‐compulsive disorder. Human Brain Mapping, 39, 803810. https://doi.org/10.1002/hbm.23883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kafka, M. (2010). Hypersexual disorder: A proposed diagnosis for DSM-V. Archives of Sexual Behavior, 39(2), 377400.

  • Kafka, M. P. (2014). What happened to hypersexual disorder? Archives of Sexual Behavior, 43(7), 12591261. https://doi.org/10.1007/s10508-014-0326-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S. G., Jung, W. H., Kim, S. N., Jang, J. H., & Kwon, J. S. (2015). Alterations of gray and white matter networks in patients with obsessive-compulsive disorder: A multimodal fusion analysis of structural MRI and DTI using mCCA+jICA. Plos One, 10(6), e0127118. https://doi.org/10.1371/journal.pone.0127118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirby, K. N., & Marakovic, N. N. (1996). Delay-discounting probabilistic rewards: Rates decrease as amounts increase. Psychonomic Bulletin & Review, 3(1), 100104. https://doi.org/10.3758/BF03210748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klucken, T., Wehrum-Osinsky, S., Schweckendiek, J., Kruse, O., & Stark, R. (2016). Altered appetitive conditioning and neural connectivity in subjects with compulsive sexual behavior. The Journal of Sexual Medicine, 13(4), 627636. https://doi.org/10.1016/j.jsxm.2016.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, K., Wagner, G., Schachtzabel, C., Schultz, C. C., Straube, T., & Güllmar, D., et al. (2012). White matter structure and symptom dimensions in obsessive-compulsive disorder. Journal of Psychiatric Research, 46(2), 264270. https://doi.org/10.1016/j.jpsychires.2011.10.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kowalewska, E., Grubbs, J. B., Potenza, M. N., Gola, M., Draps, M., & Kraus, S. W. (2018). Neurocognitive mechanisms in compulsive sexual behavior disorder. Current Sexual Health Reports, 10(4), 255264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, S. W., Gola, M., Grubbs, J. B., Kowalewska, E., Hoff, R. A., Lew-Starowicz, M., et al. (2020). Validation of a Brief pornography screen across multiple samples, Journal of Behavioral Addictions, 9(2), 259271. Retrieved September 17, 2020 https://doi.org/10.1556/2006.2020.00038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, S. W., Krueger, R. B., Briken, P., First, M. B., Stein, D. J., Kaplan, M. S., et al. (2018). Compulsive sexual behaviour disorder in the ICD‐11. World Psychiatry, 17, 109110. https://doi.org/10.1002/wps.20499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, S. W., Voon, V., & Potenza, M. N. (2016). Should compulsive sexual behavior be considered an addiction? Addiction. https://doi.org/10.1111/add.13297.

    • Search Google Scholar
    • Export Citation
  • Kühn, S., & Gallinat, J. (2014). Brain structure and functional connectivity associated with pornography consumption: The brain on porn. JAMA Psychiatry, 71(7), 827834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kühn, S., & Gallinat, J. (2016). Neurobiological basis of hypersexuality. International Review of Neurobiology, 117. https://doi.org/10.1016/bs.irn.2016.04.002.

    • Search Google Scholar
    • Export Citation
  • Le Bihan, D. (2003). Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews. Neuroscience, 4(6), 469480. https://doi.org/10.1038/nrn1119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Bihan, D., Mangin, J. F., Poupon, C., Clark, C. A., Pappata, S., & Molko, N., et al. (2001). Diffusion tensor imaging: concepts and applications. Journal of Magnetic Resonance Imaging: JMRI, 13(4), 534546. https://doi.org/10.1002/jmri.1076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lew-Starowicz, M., Lewczuk, K., Nowakowska, I., Kraus, S., & Gola, M. (2020). Compulsive sexual behavior and dysregulation of emotion. Sexual Medicine Reviews, 8(2), 191-205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., Huang, X., Yang, Y., Li, B., Wu, Q., Zhang, T., et al. (2011). Microstructural brain abnormalities in patients with obsessive-compulsive disorder: Diffusion-tensor MR imaging study at 3.0 T. Radiology, 260(1), 216223. https://doi.org/10.1148/radiol.11101971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., Ji, W., Li, D., Li, X., & Feng, W. (2014). Microstructural abnormality in left nucleus accumbens predicts dysfunctional beliefs in treatment-resistant obsessive-compulsive disorder. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 20, 22752282. https://doi.org/10.12659/MSM.891102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lochner, C., Fouché, J. P., du Plessis, S., Spottiswoode, B., Seedat, S., Fineberg, N., et al. (2012). Evidence for fractional anisotropy and mean diffusivity white matter abnormalities in the internal capsule and cingulum in patients with obsessive-compulsive disorder. Journal of Psychiatry & Neuroscience : JPN, 37(3), 193199. https://doi.org/10.1503/jpn.110059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcowski, P., Kowalewska, E., Sadowski, J., & Gola, M. (2020). Delay discounting among individuals with compulsive sexual behaviors in 12-Step groups. Journal of Behavioral Addiction. (in press).

    • Search Google Scholar
    • Export Citation
  • Menzies, L., Williams, G. B., Chamberlain, S. R., Ooi, C., Fineberg, N., Suckling, J., et al. (2008). White matter abnormalities in patients with obsessive-compulsive disorder and their first-degree relatives. American Journal of Psychiatry, 165(10), 13081315. https://doi.org/10.1176/appi.ajp.2008.07101677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mick, T. M., & Hollander, E. (2006). Impulsive-compulsive sexual behavior. CNS Spectrum, 11(12), 944955. https://doi.org/10.1017/s1092852900015133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miner M. H., Dickenson, J., & Coleman E. (2019). Effects of emotions on sexual behavior in men with and without hypersexuality. Sexual Addiction & Compulsivity, 26(1–2), 2441, https://doi.org/10.1080/10720162.2018.1564408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morales, A. M., Jones, S. A., Harman, G., Patching-Bunch, J., & Nagel, B. J. (2020). Associations between nucleus accumbens structural connectivity, brain function, and initiation of binge drinking. Addiction Biology, 25(3), e12767. https://doi.org/10.1111/adb.12767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamae, T., Narumoto, J., Sakai, Y., Nishida, S., Yamada, K., Nishimura, T., et al. (2011). Diffusion tensor imaging and tract-based spatial statistics in obsessive-compulsive disorder. Journal of Psychiatric Research, 45(5), 687690. https://doi.org/https://doi.org/10.1016/j.jpsychires.2010.09.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamae, T., Narumoto, J., Shibata, K., Matsumoto, R., Kitabayashi, Y., Yoshida, T., et al. (2008). Alteration of fractional anisotropy and apparent diffusion coefficient in obsessive–compulsive disorder: A diffusion tensor imaging study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32(5), 12211226. https://doi.org/https://doi.org/10.1016/j.pnpbp.2008.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, J.S., Jang, J.H., Jung, W.H., Kang, D.‐H., Choi, J.‐S., Choi, C.‐H., et al. (2012). Reduced fronto‐callosal fiber integrity in unmedicated OCD patients: A diffusion tractography study. Human Brain Mapping, 33: 24412452. https://doi.org/10.1002/hbm.21372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oishi, K., Faria, A. V., Van Zijl, P. C., & Mori, S. (2010). MRI atlas of human white matter. Academic Press.

  • Pandey, A. K., Ardekani, B. A., Kamarajan, C., Zhang, J., Chorlian, D. B., Byrne, K. N., et al. (2018). Lower prefrontal and hippocampal volume and diffusion tensor imaging differences reflect structural and functional abnormalities in abstinent individuals with alcohol use disorder. Alcoholism: Clinical and Experimental Research, 42(10), 18831896. https://doi.org/10.1111/acer.13854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potenza, M. N., Gola, M., Voon, V., Kor, A., & Kraus, S. W. (2017). Is excessive sexual behaviour an addictive disorder? The Lancet Psychiatry, 4(9), 663664. https://doi.org/10.1016/S2215-0366(17)30316-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, R. C., Carpenter, B. N., Hook, J. N., Garos, S., Manning, J. C., et al. (2012). Report of findings in a DSM-5 field trial for hypersexual disorder. Journal of Sexual Medicine, 9, 28682877. https://doi.org/10.1111/j.1743-6109.2012.02936.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, R. C., & Kafka, M. P. (2014). Controversies about hypersexual disorder and the DSM-5. Current Sexual Health Reports, 6(4), 259264. https://doi.org/10.1007/s11930-014-0031-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, Y., Nobuhara, K., Okugawa, G., Takase, K., Sugimoto, T., Horiuchi, M., et al. (2008). Corpus callosum in patients with obsessive-compulsive disorder: Diffusion-tensor imaging study. Radiology, 246(2), 536542. https://doi.org/10.1148/radiol.2462061469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Salles Andrade, J. B., Ferreira, F. M., Suo, C., Yücel, M., Frydman, I., Monteiro, M., et al. (2019). An MRI study of the metabolic and structural abnormalities in obsessive-compulsive disorder. Frontiers in Human Neuroscience, 13, 186. https://doi.org/10.3389/fnhum.2019.00186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segobin, S., Laniepce, A., Ritz, L., Lannuzel, C., Boudehent, C., Cabé, N., et al. (2019). Dissociating thalamic alterations in alcohol use disorder defines specificity of Korsakoff’s syndrome. Brain, 142(5), 14581470. https://doi.org/10.1093/brain/awz056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seok, J. W., & Sohn, J. H. (2015). Neural substrates of sexual desire in individuals with problematic hypersexual behavior. Frontiers in Behavioral Neuroscience, 9, 321. https://doi.org/10.3389/fnbeh.2015.00321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seok, J. W., & Sohn, J. H. (2018). Gray matter deficits and altered resting-state connectivity in the superior temporal gyrus among individuals with problematic hypersexual behavior. Brain Research, 1684, 3039. https://doi.org/10.1016/j.brainres.2018.01.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4), 14871505. https://doi.org/10.1016/j.neuroimage.2006.02.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, 208219. https://doi.org/10.1016/j.neuroimage.2004.07.051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spalletta, G., Piras, F., Fagioli, S., Caltagirone, C., & Piras, F. (2014). Brain microstructural changes and cognitive correlates in patients with pure obsessive compulsive disorder. Brain and Behavior, 4(2), 261277. https://doi.org/10.1002/brb3.212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stinchfield, R. (2002). Reliability, validity, and classification accuracy of the South Oaks Gambling screen (SOGS). Addictive Behaviors, 27, 119, https://doi.org/10.1016/s0306-4603(00)00158-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szeszko, P. R., Ardekani, B. A., Ashtari, M., Malhotra, A. K., Robinson, D. G., Bilder, R. M., et al. (2005). White matter abnormalities in obsessive-compulsive disorder: A diffusion tensor imaging study. Archives of General Psychiatry, 62(7), 782790. https://doi.org/10.1001/archpsyc.62.7.782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Versace, A., Graur, S., Greenberg, T., Lima Santos, J. P., Chase, H. W., Bonar, L., et al. (2019). Reduced focal fiber collinearity in the cingulum bundle in adults with obsessive-compulsive disorder. Neuropsychopharmaradcology: Official Publication of the American College of Neuropsychopharmacology, 44(7), 11821188. https://doi.org/10.1038/s41386-019-0353-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voon, V., Mole, T. B., Banca, P., Porter, L., Morris, L., Mitchell, S., et al. (2014). Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviours. Plos One, 9(7), e102419. https://doi.org/10.1371/journal.pone.0102419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, R., Fan, Q., Zhang, Z., Chen, Y., Zhu, Y., & Li, Y. (2018). Anterior thalamic radiation structural and metabolic changes in obsessive-compulsive disorder: A combined DTI-MRS study. Psychiatry Research: Neuroimaging, 277, 3944. https://doi.org/https://doi.org/10.1016/j.pscychresns.2018.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wierzba, M., Riegel, M., Pucz, A., Leśniewska, Z., Dragan, W. Ł., Gola, M., et al. (2015). Erotic subset for the Nencki affective picture system (NAPS ERO): Cross-sexual comparison study. Frontiers in Psychology, 6, 1336. https://doi.org/10.3389/fpsyg.2015.01336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wordecha, M., Wilk, M., Kowalewska, E., Skorko, M., Łapiński, A., & Gola, M. (2018). “Pornographic binges” as a key characteristic of males seeking treatment for compulsive sexual behaviors: Qualitative and quantitative 10-week-long diary assessment. Journal of Behavioral Addictions, 7(2), 433444. https://doi.org/10.1556/2006.7.2018.33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Health Organization (2018). ICD-11 for mortality and morbidity Statistics. From: https://icd.who.int/browse11/l-m/en#/http://id.who.int/icd/entity/1630268048.

    • Search Google Scholar
    • Export Citation
  • Yip, S. W., Morie, K. P., Xu, J., Constable, R. T., Malison, R. T., Carroll, K. M., et al. (2017). Shared microstructural features of behavioral and substance addictions revealed in areas of crossing fibers. Biological psychiatry. Cognitive Neuroscience and Neuroimaging, 2(2), 188195. https://doi.org/10.1016/j.bpsc.2016.03.001.

    • Search Google Scholar
    • Export Citation
  • Yoo, S.Y., Jang, J.H., Shin, Y.‐W., Kim, D.J., Park, H.‐J., Moon, W.‐J., et al. (2007). White matter abnormalities in drug‐naïve patients with obsessive–compulsive disorder: A diffusion tensor study before and after citalopram treatment. Acta Psychiatrica Scandinavica, 116, 211219. https://doi.org/10.1111/j.1600-0447.2007.01046.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, K. S. (2008). Internet sex addiction: Risk factors, stages of development, and treatment. American Behavioral Scientist, 52(1), 2137. https://doi.org/10.1177/0002764208321339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, K., Qin, W., Dong, M., Liu, J., Sun, J., Liu, P., et al. (2010). Gray matter deficits and resting-state abnormalities in abstinent heroin-dependent individuals. Neuroscience Letters, 482, 101105. https://doi.org/10.1016/j.neulet.2010.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, Z., Yang, X., Cao, R., Li, P., Li, Z., Lv, L., et al. (2019). Abnormalities of white matter microstructure in unmedicated patients with obsessive-compulsive disorder: Changes after cognitive behavioral therapy. Brain and Behavior, 9(2), e01201. https://doi.org/10.1002/brb3.1201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., Xu, J., Ping, L., Zhang, F., Chen, W., & Shen, Z., et al. (2018). Cortical thickness and white matter integrity abnormalities in obsessive–compulsive disorder: A combined multimodal surface‐based morphometry and tract‐based spatial statistics study. Depression and Anxiety, 35, 742751. https://doi.org/10.1002/da.22758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, Y., Murray, D. E., Durazzo, T. C., Schmidt, T. P., Murray, T. A., & Meyerhoff, D. J. (2017). Effects of abstinence and chronic cigarette smoking on white matter microstructure in alcohol dependence: Diffusion tensor imaging at 4T. Drug and Alcohol Dependence, 175, 4250. https://doi.org/10.1016/j.drugalcdep.2017.01.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Babor, T. F., de la Fuente, R. J., Saunders, J., & Grant, M, (1989). AUDIT. The alcohol use disorders identyfication test. Guidelines for use in primary Health care. Genewa: World Health Organization.

    • Search Google Scholar
    • Export Citation
  • Basser, P. J., & Jones, D. K., (2002). Diffusion-tensor MRI: theory, experimental design and data analysis – A technical review. NMR in Biomedicine, 15(7), 456467. https://doi.org/10.1002/nbm.783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedetti, F., Giacosa, C., Radaelli, D., Poletti, S., Pozzi, E., Dallaspezia, S., et al. (2013). Widespread changes of white matter microstructure in obsessive–compulsive disorder: Effect of drug status. European Neuropsychopharmacology, 23(7), 581593. https://doi.org/https://doi.org/10.1016/j.euroneuro.2012.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bora, E., Harrison, B. J., Fornito, A., Cocchi, L., Pujol, J., Fontenelle, L. F., et al. (2011). White matter microstructure in patients with obsessive-compulsive disorder. Journal of Psychiatry & Neuroscience: JPN, 36(1), 4246. https://doi.org/10.1503/jpn.100082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brand, M., Snagowski, J., Laier, C., & Maderwald, S. (2016). Ventral striatum activity when watching preferred pornographic pictures is correlated with symptoms of internet pornography addiction. NeuroImage, 129, 224232 https://doi.org/10.1016/j.neuroimage.2016.01.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bőthe, B., Tóth-Király, I., Potenza, M. N., Griffiths, M. D., Orosz, G., & Demetrovics, Z. (2019). Revisiting the role of impulsivity and compulsivity in problematic sexual behaviors. The Journal of Sex Research, 56(2), 166179. https://doi.org/10.1080/00224499.2018.1480744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannistraro, P. A., Makris, N., Howard, J. D., Wedig, M. M., Hodge, S. M., Wilhelm, S., et al. (2007). A diffusion tensor imaging study of white matter in obsessive–compulsive disorder. Depression and Anxiety, 24, 440446. https://doi.org/10.1002/da.20246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chumin, E. J., Grecco, G. G., Dzemidzic, M., Cheng, H., Finn, P., Sporns, O., et al. (2019), Alterations in white matter microstructure and connectivity in Young adults with alcohol use disorder. Alcoholism: Clinical and Experimental Research, 43, 11701179. https://doi.org/10.1111/acer.14048.

    • Search Google Scholar
    • Export Citation
  • Coleman, E., Raymond, N., & McBean, A. (2003). Assessment and treatment of compulsive sexual behavior. Minnesota Medicine, 86(7), 4247.

    • Search Google Scholar
    • Export Citation
  • De Santis, S., Bach, P., Pérez-Cervera, L., Cosa-Linan, A., Weil, G., Vollstädt-Klein, S., et al. (2019). Microstructural white matter alterations in men with alcohol use disorder and rats with excessive alcohol consumption during early abstinence. JAMA Psychiatry, 76(7), 749758. https://doi.org/10.1001/jamapsychiatry.2019.0318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deacon, B. J., & Abramowitz, J. S. (2005). The Yale-Brown Obsessive-Compulsive Scale: Factor analysis, construct validity, and suggestions for refinement. Journal of Anxiety Disorders, 19, 573585. https://doi.org/10.1016/j.janxdis.2004.04.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draps, M., Sescousse, G., Potenza, M. N., Marchewka, A., Duda, A., Lew-Starowicz, M., et al. (2020). Gray matter volume differences in impulse control and addictive disorders—an evidence from a sample of heterosexual males. The Journal of Sexual Medicine, 17(9), 17611769. https://doi.org/10.1016/j.jsxm.2020.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, S., van den Heuvel, O. A., Cath, D. C., van der Werf, Y. D., de Wit, S. J., de Vries, F. E., et al. (2016). Mild white matter changes in un-medicated obsessive-compulsive disorder patients and their unaffected siblings. Frontiers in Neuroscience, 9, 495. https://doi.org/10.3389/fnins.2015.00495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Q., Yan, X., Wang, J., Chen, Y., Wang, X., Li, C., et al. (2012). Abnormalities of white matter microstructure in unmedicated obsessive-compulsive disorder and changes after medication. Plos One, 7(4), e35889. https://doi.org/10.1371/journal.pone.0035889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fineberg, N. A., Chamberlain, S. R., Goudriaan, A. E., Stein, D. J., Vanderschuren, L. J., Gillan, C. M., et al. (2014). New developments in human neurocognition: Clinical, genetic, and brain imaging correlates of impulsivity and compulsivity. CNS Spectrums, 19, 6989. https://doi.org/10.1017/S1092852913000801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzgerald, K. D., Liu, Y., Reamer, E. N., Taylor, S. F., & Welsh, R. C. (2014). Atypical frontal-striatal-thalamic circuit white matter development in pediatric obsessive-compulsive disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 53(11), 12251233. https://doi.org/10.1016/j.jaac.2014.08.010. .

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Foa, E. B., Huppert, J. D., Leiberg, S., Hajcak, G., Langner, R., & Kichic, R., et al. (2002). The obsessive compulsive inventory: Development and validation of a short version. Psychological Assessment, 14, 485496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fontenelle, L., Bramati, I., Moll, J., Mendlowicz, M., De Oliveira-Souza, R., & Tovar-Moll, F. (2011). White matter changes in OCD revealed by diffusion tensor imaging. CNS Spectrums, 16(5), 101109. https://doi.org/10.1017/S1092852912000260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gan, J., Zhong, M., Fan, J., Liu, W., Niu, C., Cai, S., et al. (2017). Abnormal white matter structural connectivity in adults with obsessive-compulsive disorder. Translational Psychiatry, 7(3), e1062. https://doi.org/10.1038/tp.2017.22.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, F. D., & Thibaut, F. (2010). Sexual addictions. The American Journal of Drug and Alcohol Abuse, 36, 254260. https://doi.org/10.3109/00952990.2010.503823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garibotto, V., Scifo, P., Gorini, A., Alonso, C. R., Brambati, S., Bellodi, L., et al. (2010). Disorganization of anatomical connectivity in obsessive compulsive disorder: A multi-parameter diffusion tensor imaging study in a subpopulation of patients. Neurobiology of Disease, 37(2), 468476. https://doi.org/https://doi.org/10.1016/j.nbd.2009.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage, 15(4), 870878. https://doi.org/10.1006/nimg.2001.1037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glahn, A., Prell, T., Grosskreutz, J., Peschel, T., & Müller-Vahl, K. R. (2015). Obsessive-compulsive disorder is a heterogeneous disorder: Evidence from diffusion tensor imaging and magnetization transfer imaging. BMC Psychiatry, 15, 135. https://doi.org/10.1186/s12888-015-0535-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gola, M., & Draps, M. (2018). Ventral striatal reactivity in compulsive sexual behaviors. Frontiers in Psychiatry, 9, 546.

  • Gola, M., Lewczuk, K., Potenza, M. N., Kingston, D. A., Grubbs, J., Stark, R., et al. (2020). What should be included in the criteria for compulsive sexual behaviour disorder? Journal of Behavioral Addictions. https://doi.org/10.1556/2006.2020.00090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gola, M., Skorko, M., Kowalewska, E., Kołodziej, A., Sikora, M., Wodyk, M., et al. (2016). Polska adaptacja testu przesiewowego na uzależnienie od zachowań seksualnych (Sexual Addiction Screening Test - Revised). SAST-PL-M. Psychiatria Polska. https://doi.org/10.12740/PP/OnlineFirst/6141.

    • Search Google Scholar
    • Export Citation
  • Gola, M., Wordecha, M., Sescousse, G., Lew-Starowicz, M., Kossowski, B., Wypych, M., et al. (2017). Can pornography be addictive? An fMRI study of men seeking treatment for problematic pornography use. Neuropsychopharmacology, 42, 2021. https://doi.org/10.1038/npp.2017.78.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffiths, M. D. (2016). Compulsive sexual behaviour as a behavioural addiction: The impact of the internet and other issues. Addiction, 111, 21072108. https://doi.org/10.1111/add.13315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guevara, M., Guevara, P., Román, C., & Mangin, J. F. (2020). Superficial white matter: A review on the dMRI analysis methods and applications. Neuroimage, 116673. https://doi.org/10.1016/j.neuroimage.2020.116673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, T., Vandborg, S., Rosenberg, R., Sørensen, L., & Videbech, P. (2016). Increased fractional anisotropy in cerebellum in obsessive–compulsive disorder. Acta Neuropsychiatrica, 28(3), 141148. https://doi.org/10.1017/neu.2015.57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, X., Steinberg, E., Stefan, M., Fontaine, M., Simpson, H. B., Marsh, R. (2018). Altered frontal interhemispheric and fronto‐limbic structural connectivity in unmedicated adults with obsessive‐compulsive disorder. Human Brain Mapping, 39, 803810. https://doi.org/10.1002/hbm.23883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kafka, M. (2010). Hypersexual disorder: A proposed diagnosis for DSM-V. Archives of Sexual Behavior, 39(2), 377400.

  • Kafka, M. P. (2014). What happened to hypersexual disorder? Archives of Sexual Behavior, 43(7), 12591261. https://doi.org/10.1007/s10508-014-0326-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S. G., Jung, W. H., Kim, S. N., Jang, J. H., & Kwon, J. S. (2015). Alterations of gray and white matter networks in patients with obsessive-compulsive disorder: A multimodal fusion analysis of structural MRI and DTI using mCCA+jICA. Plos One, 10(6), e0127118. https://doi.org/10.1371/journal.pone.0127118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirby, K. N., & Marakovic, N. N. (1996). Delay-discounting probabilistic rewards: Rates decrease as amounts increase. Psychonomic Bulletin & Review, 3(1), 100104. https://doi.org/10.3758/BF03210748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klucken, T., Wehrum-Osinsky, S., Schweckendiek, J., Kruse, O., & Stark, R. (2016). Altered appetitive conditioning and neural connectivity in subjects with compulsive sexual behavior. The Journal of Sexual Medicine, 13(4), 627636. https://doi.org/10.1016/j.jsxm.2016.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, K., Wagner, G., Schachtzabel, C., Schultz, C. C., Straube, T., & Güllmar, D., et al. (2012). White matter structure and symptom dimensions in obsessive-compulsive disorder. Journal of Psychiatric Research, 46(2), 264270. https://doi.org/10.1016/j.jpsychires.2011.10.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kowalewska, E., Grubbs, J. B., Potenza, M. N., Gola, M., Draps, M., & Kraus, S. W. (2018). Neurocognitive mechanisms in compulsive sexual behavior disorder. Current Sexual Health Reports, 10(4), 255264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, S. W., Gola, M., Grubbs, J. B., Kowalewska, E., Hoff, R. A., Lew-Starowicz, M., et al. (2020). Validation of a Brief pornography screen across multiple samples, Journal of Behavioral Addictions, 9(2), 259271. Retrieved September 17, 2020 https://doi.org/10.1556/2006.2020.00038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, S. W., Krueger, R. B., Briken, P., First, M. B., Stein, D. J., Kaplan, M. S., et al. (2018). Compulsive sexual behaviour disorder in the ICD‐11. World Psychiatry, 17, 109110. https://doi.org/10.1002/wps.20499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, S. W., Voon, V., & Potenza, M. N. (2016). Should compulsive sexual behavior be considered an addiction? Addiction. https://doi.org/10.1111/add.13297.

    • Search Google Scholar
    • Export Citation
  • Kühn, S., & Gallinat, J. (2014). Brain structure and functional connectivity associated with pornography consumption: The brain on porn. JAMA Psychiatry, 71(7), 827834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kühn, S., & Gallinat, J. (2016). Neurobiological basis of hypersexuality. International Review of Neurobiology, 117. https://doi.org/10.1016/bs.irn.2016.04.002.

    • Search Google Scholar
    • Export Citation
  • Le Bihan, D. (2003). Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews. Neuroscience, 4(6), 469480. https://doi.org/10.1038/nrn1119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Bihan, D., Mangin, J. F., Poupon, C., Clark, C. A., Pappata, S., & Molko, N., et al. (2001). Diffusion tensor imaging: concepts and applications. Journal of Magnetic Resonance Imaging: JMRI, 13(4), 534546. https://doi.org/10.1002/jmri.1076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lew-Starowicz, M., Lewczuk, K., Nowakowska, I., Kraus, S., & Gola, M. (2020). Compulsive sexual behavior and dysregulation of emotion. Sexual Medicine Reviews, 8(2), 191-205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., Huang, X., Yang, Y., Li, B., Wu, Q., Zhang, T., et al. (2011). Microstructural brain abnormalities in patients with obsessive-compulsive disorder: Diffusion-tensor MR imaging study at 3.0 T. Radiology, 260(1), 216223. https://doi.org/10.1148/radiol.11101971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., Ji, W., Li, D., Li, X., & Feng, W. (2014). Microstructural abnormality in left nucleus accumbens predicts dysfunctional beliefs in treatment-resistant obsessive-compulsive disorder. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 20, 22752282. https://doi.org/10.12659/MSM.891102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lochner, C., Fouché, J. P., du Plessis, S., Spottiswoode, B., Seedat, S., Fineberg, N., et al. (2012). Evidence for fractional anisotropy and mean diffusivity white matter abnormalities in the internal capsule and cingulum in patients with obsessive-compulsive disorder. Journal of Psychiatry & Neuroscience : JPN, 37(3), 193199. https://doi.org/10.1503/jpn.110059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcowski, P., Kowalewska, E., Sadowski, J., & Gola, M. (2020). Delay discounting among individuals with compulsive sexual behaviors in 12-Step groups. Journal of Behavioral Addiction. (in press).

    • Search Google Scholar
    • Export Citation
  • Menzies, L., Williams, G. B., Chamberlain, S. R., Ooi, C., Fineberg, N., Suckling, J., et al. (2008). White matter abnormalities in patients with obsessive-compulsive disorder and their first-degree relatives. American Journal of Psychiatry, 165(10), 13081315. https://doi.org/10.1176/appi.ajp.2008.07101677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mick, T. M., & Hollander, E. (2006). Impulsive-compulsive sexual behavior. CNS Spectrum, 11(12), 944955. https://doi.org/10.1017/s1092852900015133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miner M. H., Dickenson, J., & Coleman E. (2019). Effects of emotions on sexual behavior in men with and without hypersexuality. Sexual Addiction & Compulsivity, 26(1–2), 2441, https://doi.org/10.1080/10720162.2018.1564408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morales, A. M., Jones, S. A., Harman, G., Patching-Bunch, J., & Nagel, B. J. (2020). Associations between nucleus accumbens structural connectivity, brain function, and initiation of binge drinking. Addiction Biology, 25(3), e12767. https://doi.org/10.1111/adb.12767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamae, T., Narumoto, J., Sakai, Y., Nishida, S., Yamada, K., Nishimura, T., et al. (2011). Diffusion tensor imaging and tract-based spatial statistics in obsessive-compulsive disorder. Journal of Psychiatric Research, 45(5), 687690. https://doi.org/https://doi.org/10.1016/j.jpsychires.2010.09.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamae, T., Narumoto, J., Shibata, K., Matsumoto, R., Kitabayashi, Y., Yoshida, T., et al. (2008). Alteration of fractional anisotropy and apparent diffusion coefficient in obsessive–compulsive disorder: A diffusion tensor imaging study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32(5), 12211226. https://doi.org/https://doi.org/10.1016/j.pnpbp.2008.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, J.S., Jang, J.H., Jung, W.H., Kang, D.‐H., Choi, J.‐S., Choi, C.‐H., et al. (2012). Reduced fronto‐callosal fiber integrity in unmedicated OCD patients: A diffusion tractography study. Human Brain Mapping, 33: 24412452. https://doi.org/10.1002/hbm.21372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oishi, K., Faria, A. V., Van Zijl, P. C., & Mori, S. (2010). MRI atlas of human white matter. Academic Press.

  • Pandey, A. K., Ardekani, B. A., Kamarajan, C., Zhang, J., Chorlian, D. B., Byrne, K. N., et al. (2018). Lower prefrontal and hippocampal volume and diffusion tensor imaging differences reflect structural and functional abnormalities in abstinent individuals with alcohol use disorder. Alcoholism: Clinical and Experimental Research, 42(10), 18831896. https://doi.org/10.1111/acer.13854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potenza, M. N., Gola, M., Voon, V., Kor, A., & Kraus, S. W. (2017). Is excessive sexual behaviour an addictive disorder? The Lancet Psychiatry, 4(9), 663664. https://doi.org/10.1016/S2215-0366(17)30316-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, R. C., Carpenter, B. N., Hook, J. N., Garos, S., Manning, J. C., et al. (2012). Report of findings in a DSM-5 field trial for hypersexual disorder. Journal of Sexual Medicine, 9, 28682877. https://doi.org/10.1111/j.1743-6109.2012.02936.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, R. C., & Kafka, M. P. (2014). Controversies about hypersexual disorder and the DSM-5. Current Sexual Health Reports, 6(4), 259264. https://doi.org/10.1007/s11930-014-0031-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, Y., Nobuhara, K., Okugawa, G., Takase, K., Sugimoto, T., Horiuchi, M., et al. (2008). Corpus callosum in patients with obsessive-compulsive disorder: Diffusion-tensor imaging study. Radiology, 246(2), 536542. https://doi.org/10.1148/radiol.2462061469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Salles Andrade, J. B., Ferreira, F. M., Suo, C., Yücel, M., Frydman, I., Monteiro, M., et al. (2019). An MRI study of the metabolic and structural abnormalities in obsessive-compulsive disorder. Frontiers in Human Neuroscience, 13, 186. https://doi.org/10.3389/fnhum.2019.00186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segobin, S., Laniepce, A., Ritz, L., Lannuzel, C., Boudehent, C., Cabé, N., et al. (2019). Dissociating thalamic alterations in alcohol use disorder defines specificity of Korsakoff’s syndrome. Brain, 142(5), 14581470. https://doi.org/10.1093/brain/awz056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seok, J. W., & Sohn, J. H. (2015). Neural substrates of sexual desire in individuals with problematic hypersexual behavior. Frontiers in Behavioral Neuroscience, 9, 321. https://doi.org/10.3389/fnbeh.2015.00321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seok, J. W., & Sohn, J. H. (2018). Gray matter deficits and altered resting-state connectivity in the superior temporal gyrus among individuals with problematic hypersexual behavior. Brain Research, 1684, 3039. https://doi.org/10.1016/j.brainres.2018.01.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4), 14871505. https://doi.org/10.1016/j.neuroimage.2006.02.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, 208219. https://doi.org/10.1016/j.neuroimage.2004.07.051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spalletta, G., Piras, F., Fagioli, S., Caltagirone, C., & Piras, F. (2014). Brain microstructural changes and cognitive correlates in patients with pure obsessive compulsive disorder. Brain and Behavior, 4(2), 261277. https://doi.org/10.1002/brb3.212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stinchfield, R. (2002). Reliability, validity, and classification accuracy of the South Oaks Gambling screen (SOGS). Addictive Behaviors, 27, 119, https://doi.org/10.1016/s0306-4603(00)00158-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szeszko, P. R., Ardekani, B. A., Ashtari, M., Malhotra, A. K., Robinson, D. G., Bilder, R. M., et al. (2005). White matter abnormalities in obsessive-compulsive disorder: A diffusion tensor imaging study. Archives of General Psychiatry, 62(7), 782790. https://doi.org/10.1001/archpsyc.62.7.782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Versace, A., Graur, S., Greenberg, T., Lima Santos, J. P., Chase, H. W., Bonar, L., et al. (2019). Reduced focal fiber collinearity in the cingulum bundle in adults with obsessive-compulsive disorder. Neuropsychopharmaradcology: Official Publication of the American College of Neuropsychopharmacology, 44(7), 11821188. https://doi.org/10.1038/s41386-019-0353-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voon, V., Mole, T. B., Banca, P., Porter, L., Morris, L., Mitchell, S., et al. (2014). Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviours. Plos One, 9(7), e102419. https://doi.org/10.1371/journal.pone.0102419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, R., Fan, Q., Zhang, Z., Chen, Y., Zhu, Y., & Li, Y. (2018). Anterior thalamic radiation structural and metabolic changes in obsessive-compulsive disorder: A combined DTI-MRS study. Psychiatry Research: Neuroimaging, 277, 3944. https://doi.org/https://doi.org/10.1016/j.pscychresns.2018.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wierzba, M., Riegel, M., Pucz, A., Leśniewska, Z., Dragan, W. Ł., Gola, M., et al. (2015). Erotic subset for the Nencki affective picture system (NAPS ERO): Cross-sexual comparison study. Frontiers in Psychology, 6, 1336. https://doi.org/10.3389/fpsyg.2015.01336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wordecha, M., Wilk, M., Kowalewska, E., Skorko, M., Łapiński, A., & Gola, M. (2018). “Pornographic binges” as a key characteristic of males seeking treatment for compulsive sexual behaviors: Qualitative and quantitative 10-week-long diary assessment. Journal of Behavioral Addictions, 7(2), 433444. https://doi.org/10.1556/2006.7.2018.33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Health Organization (2018). ICD-11 for mortality and morbidity Statistics. From: https://icd.who.int/browse11/l-m/en#/http://id.who.int/icd/entity/1630268048.

    • Search Google Scholar
    • Export Citation
  • Yip, S. W., Morie, K. P., Xu, J., Constable, R. T., Malison, R. T., Carroll, K. M., et al. (2017). Shared microstructural features of behavioral and substance addictions revealed in areas of crossing fibers. Biological psychiatry. Cognitive Neuroscience and Neuroimaging, 2(2), 188195. https://doi.org/10.1016/j.bpsc.2016.03.001.

    • Search Google Scholar
    • Export Citation
  • Yoo, S.Y., Jang, J.H., Shin, Y.‐W., Kim, D.J., Park, H.‐J., Moon, W.‐J., et al. (2007). White matter abnormalities in drug‐naïve patients with obsessive–compulsive disorder: A diffusion tensor study before and after citalopram treatment. Acta Psychiatrica Scandinavica, 116, 211219. https://doi.org/10.1111/j.1600-0447.2007.01046.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, K. S. (2008). Internet sex addiction: Risk factors, stages of development, and treatment. American Behavioral Scientist, 52(1), 2137. https://doi.org/10.1177/0002764208321339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, K., Qin, W., Dong, M., Liu, J., Sun, J., Liu, P., et al. (2010). Gray matter deficits and resting-state abnormalities in abstinent heroin-dependent individuals. Neuroscience Letters, 482, 101105. https://doi.org/10.1016/j.neulet.2010.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, Z., Yang, X., Cao, R., Li, P., Li, Z., Lv, L., et al. (2019). Abnormalities of white matter microstructure in unmedicated patients with obsessive-compulsive disorder: Changes after cognitive behavioral therapy. Brain and Behavior, 9(2), e01201. https://doi.org/10.1002/brb3.1201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., Xu, J., Ping, L., Zhang, F., Chen, W., & Shen, Z., et al. (2018). Cortical thickness and white matter integrity abnormalities in obsessive–compulsive disorder: A combined multimodal surface‐based morphometry and tract‐based spatial statistics study. Depression and Anxiety, 35, 742751. https://doi.org/10.1002/da.22758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, Y., Murray, D. E., Durazzo, T. C., Schmidt, T. P., Murray, T. A., & Meyerhoff, D. J. (2017). Effects of abstinence and chronic cigarette smoking on white matter microstructure in alcohol dependence: Diffusion tensor imaging at 4T. Drug and Alcohol Dependence, 175, 4250. https://doi.org/10.1016/j.drugalcdep.2017.01.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Dr. Zsolt Demetrovics
Institute of Psychology, ELTE Eötvös Loránd University
Address: Izabella u. 46. H-1064 Budapest, Hungary
Phone: +36-1-461-2681
E-mail: jba@ppk.elte.hu

Indexing and Abstracting Services:

  • Web of Science [Science Citation Index Expanded (also known as SciSearch®)
  • Journal Citation Reports/Science Edition
  • Social Sciences Citation Index®
  • Journal Citation Reports/ Social Sciences Edition
  • Current Contents®/Social and Behavioral Sciences
  • EBSCO
  • GoogleScholar
  • PsycINFO
  • PubMed Central
  • SCOPUS
  • Medline
  • CABI
  • CABELLS Journalytics

2023  
Web of Science  
Journal Impact Factor 6.6
Rank by Impact Factor Q1 (Psychiatry)
Journal Citation Indicator 1.59
Scopus  
CiteScore 12.3
CiteScore rank Q1 (Clinical Psychology)
SNIP 1.604
Scimago  
SJR index 2.188
SJR Q rank Q1

Journal of Behavioral Addictions
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 990 EUR/article
Effective from  1st Feb 2025:
1400 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%.
Subscription Information Gold Open Access

Journal of Behavioral Addictions
Language English
Size A4
Year of
Foundation
2011
Volumes
per Year
1
Issues
per Year
4
Founder Eötvös Loránd Tudományegyetem
Founder's
Address
H-1053 Budapest, Hungary Egyetem tér 1-3.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-5871 (Print)
ISSN 2063-5303 (Online)

Senior editors

Editor(s)-in-Chief: Zsolt DEMETROVICS

Assistant Editor(s): Csilla ÁGOSTON

Associate Editors

  • Stephanie ANTONS (Universitat Duisburg-Essen, Germany)
  • Joel BILLIEUX (University of Lausanne, Switzerland)
  • Beáta BŐTHE (University of Montreal, Canada)
  • Matthias BRAND (University of Duisburg-Essen, Germany)
  • Ruth J. van HOLST (Amsterdam UMC, The Netherlands)
  • Daniel KING (Flinders University, Australia)
  • Gyöngyi KÖKÖNYEI (ELTE Eötvös Loránd University, Hungary)
  • Ludwig KRAUS (IFT Institute for Therapy Research, Germany)
  • Marc N. POTENZA (Yale University, USA)
  • Hans-Jurgen RUMPF (University of Lübeck, Germany)

Editorial Board

  • Sophia ACHAB (Faculty of Medicine, University of Geneva, Switzerland)
  • Alex BALDACCHINO (St Andrews University, United Kingdom)
  • Judit BALÁZS (ELTE Eötvös Loránd University, Hungary)
  • Maria BELLRINGER (Auckland University of Technology, Auckland, New Zealand)
  • Henrietta BOWDEN-JONES (Imperial College, United Kingdom)
  • Damien BREVERS (University of Luxembourg, Luxembourg)
  • Wim VAN DEN BRINK (University of Amsterdam, The Netherlands)
  • Julius BURKAUSKAS (Lithuanian University of Health Sciences, Lithuania)
  • Gerhard BÜHRINGER (Technische Universität Dresden, Germany)
  • Silvia CASALE (University of Florence, Florence, Italy)
  • Luke CLARK (University of British Columbia, Vancouver, B.C., Canada)
  • Jeffrey L. DEREVENSKY (McGill University, Canada)
  • Geert DOM (University of Antwerp, Belgium)
  • Nicki DOWLING (Deakin University, Geelong, Australia)
  • Hamed EKHTIARI (University of Minnesota, United States)
  • Jon ELHAI (University of Toledo, Toledo, Ohio, USA)
  • Ana ESTEVEZ (University of Deusto, Spain)
  • Fernando FERNANDEZ-ARANDA (Bellvitge University Hospital, Barcelona, Spain)
  • Naomi FINEBERG (University of Hertfordshire, United Kingdom)
  • Sally GAINSBURY (The University of Sydney, Camperdown, NSW, Australia)
  • Belle GAVRIEL-FRIED (The Bob Shapell School of Social Work, Tel Aviv University, Israel)
  • Biljana GJONESKA (Macedonian Academy of Sciences and Arts, Republic of North Macedonia)
  • Marie GRALL-BRONNEC (University Hospital of Nantes, France)
  • Jon E. GRANT (University of Minnesota, USA)
  • Mark GRIFFITHS (Nottingham Trent University, United Kingdom)
  • Joshua GRUBBS (University of New Mexico, Albuquerque, NM, USA)
  • Anneke GOUDRIAAN (University of Amsterdam, The Netherlands)
  • Susumu HIGUCHI (National Hospital Organization Kurihama Medical and Addiction Center, Japan)
  • David HODGINS (University of Calgary, Canada)
  • Eric HOLLANDER (Albert Einstein College of Medicine, USA)
  • Zsolt HORVÁTH (Eötvös Loránd University, Hungary)
  • Susana JIMÉNEZ-MURCIA (Clinical Psychology Unit, Bellvitge University Hospital, Barcelona, Spain)
  • Yasser KHAZAAL (Geneva University Hospital, Switzerland)
  • Orsolya KIRÁLY (Eötvös Loránd University, Hungary)
  • Chih-Hung KO (Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan)
  • Shane KRAUS (University of Nevada, Las Vegas, NV, USA)
  • Hae Kook LEE (The Catholic University of Korea, Republic of Korea)
  • Bernadette KUN (Eötvös Loránd University, Hungary)
  • Katerina LUKAVSKA (Charles University, Prague, Czech Republic)
  • Giovanni MARTINOTTI (‘Gabriele d’Annunzio’ University of Chieti-Pescara, Italy)
  • Gemma MESTRE-BACH (Universidad Internacional de la Rioja, La Rioja, Spain)
  • Astrid MÜLLER (Hannover Medical School, Germany)
  • Daniel Thor OLASON (University of Iceland, Iceland)
  • Ståle PALLESEN (University of Bergen, Norway)
  • Afarin RAHIMI-MOVAGHAR (Teheran University of Medical Sciences, Iran)
  • József RÁCZ (Hungarian Academy of Sciences, Hungary)
  • Michael SCHAUB (University of Zurich, Switzerland)
  • Marcantanio M. SPADA (London South Bank University, United Kingdom)
  • Daniel SPRITZER (Study Group on Technological Addictions, Brazil)
  • Dan J. STEIN (University of Cape Town, South Africa)
  • Sherry H. STEWART (Dalhousie University, Canada)
  • Attila SZABÓ (Eötvös Loránd University, Hungary)
  • Hermano TAVARES (Instituto de Psiquiatria do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil)
  • Alexander E. VOISKOUNSKY (Moscow State University, Russia)
  • Aviv M. WEINSTEIN (Ariel University, Israel)
  • Anise WU (University of Macau, Macao, China)