Magnetic skyrmions are vortex-like spin structures that are of great interest scientifically and for applications in low-power magnetic memories. The nanometer size and complex spin structure require high-resolution and quantitative experimental methods to study the physical properties of skyrmions. Here, we illustrate how Lorentz TEM and off-axis electron holography can be used to study the spin textures of magnetic skyrmions in the noncentrosymmetric B20-type helimagnet FeGe as a function of temperature and applied magnetic field. By reversing the magnetic field inside the microscope, the switching mechanism of the skyrmion lattice at 240 K is followed, showing a transition of the skyrmion lattice to the helical structure before the anti-skyrmion lattice is formed.
Kiselev NS , Bogdanov AN, Schäfer R, Rössler UK: Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies? J Phys, D Appl Phys 44, 392001 (2011)
Mühlbauer S , Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P: Skyrmion lattice in a chiral magnet. Science 323, 915 (2009)
Yu XZ , Onose Y, Kanazawa N, Park JH, Han JH, Matsui Y, Nagaosa N, Tokura Y: Real-space observation of a twodimensional skyrmion crystal. Nature 465, 901 (2010)
Yu XZ , Kanazawa N, Onose Y, Kimoto K, Zhang WZ, Ishiiwata S, Matsui Y, Tokura Y: Near room temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat Mater 10, 106 (2011)
Shibata K , Yu XZ, Morikawa D, Kanazawa N, Kimoto K, Ishiwata S, Matsui Y, Tokura Y: Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling. Nat Nanotechnol 8, 723 (2013)
Dzyaloshinsky I : Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances. J Phys Chem Solids 4, 241 (1958)
Moriya T : Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev 120, 91 (1960)
Heinze S , von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S: Spontaneous atomicscale magnetic skyrmion lattice in two dimensions. Nat Phys 7, 713 (2011)
Woo S , Litzius K, Krüger B, Im MY, Caretta L, Richter K, Mann M, Krone A, Reeve RM, Weigand M, Agrawal P, Lemesh I, Mawass MA, Fischer P, Kläui M, Beach GSD: Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat Mater 15, 501 (2016)
Kézsmárki I , Bordács S, Milde P, Neuber E, Eng LM, White JS, Rønnow HM, Dewhurst CD, Mochizuki M, Yanai K, Nakamura H, Ehlers D, Tsurkan V, Loidl A: Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat Mater 14, 1116 (2015)
Rajeswari J , Huang P, Mancini GF, Murooka Y, Latychevskaia T, McGrouther D, Cantoni M, Baldini E, White JS, Magrez A, Giamarchi T, Rønnow HM, Carbone F: Filming the formation and fluctuation of skyrmion domains by cryo- Lorentz transmission electron microscopy. Proc Natl Acad Sci 112, 14212 (2015)
Shibata K , Iwasaki J, Kanazawa N, Aizawa S, Tanigaki T, Shirai M, Nakajima T, Kubota M, Kawasaki M, Park HS, Shindo D, Nagaosa N, Tokura Y: Large anisotropic deformation of skyrmions in strained crystal. Nat Nanotechnol 10, 589 (2015)
Du H , Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang Y, Tian M: Edge mediated skyrmion chain and its collective dynamics in a confined geometry. Nat Commun 6, 8504 (2015)
Park HS , Yu X, Aizawa S, Tanigaki T, Akashi T, Takahashi Y, Matsuda T, Kanazawa N, Onose Y, Shindo D, Tonomura A, Tokura Y: Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography. Nat Nanotechnol 9, 337 (2014)
Boothroyd C , Kovács A, Tillmann K: FEI Titan G2 60-300 HOLO. J Large-Scale Facil 2, A44 (2016)
Saxton WO , Pitt TJ, Horner M: Digital image processing: the Semper system. Ultramicroscopy 4, 343 (1979)
Morikawa D , Shibata K, Kanazawa N, Yu XZ, Tokura Y: Phys Rev B 88, 024408 (2013)
Tegue MR : Deterministic phase retrieval: a Green’s function solution. J Opt Soc Am 73, 1434 (1983)
Ishizuka K , Allman B: Phase measurement of atomic resolution imaging using transport of intensity equation. J Electron Microsc 54, 191 (2005)
Phatak C , Petford-Long AK, De Graef M: Recent advances in Lorentz microscopy. Curr Opin Solid State Mater Sci 20, 107 (2016)
Cowley JM : Twenty forms of electron holography. Ultramicroscopy 41, 335 (1992)
Tanigaki T , Harada K, Murakami Y, Niitsu K, Akashi T, Takahashi Y, Sugawara A, Shindo D: New trend in electron holography. J Phys, D Appl Phys 49, 244001 (2016)
McCartney MR , Smith DJ: Electron holography: phase imaging with nanometer resolution. Annu Rev Mater Res 37, 729 (2007)
Lichte H , Lehmann M: Electron holography — basics and applications. Rep Prog Phys 71, 016102 (2008)
Dunin-Borkowski RE , McCartney MR, Smith DJ: Electron holography of nanostructured materials. Encycl Nanosci Nanotechnol 3, 41 (2004)
Shibata K , Kovács A, Kanazawa N, Dunin-Borkowski RE, Tokura Y: Temperature and magnetic field dependence of the internal and lattice structures of skyrmions by off-axis electron holography. submitted, arXiv:1606.05723
Rybakov FN , Borisov AB, Bogdanov AN: Three-dimensional skyrmion states in thin films of cubic helimagnets. Phys Rev B 87, 094424 (2013)