View More View Less
  • 1 Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 49, Hungary
  • 2 Leibniz-Institut für Photonische Technologien, Albert Einstein Str. 9, D-07745, Jena, Germany
  • 3 Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
  • 4 MaxPlanck Institut für die Physik des Lichts, Günther Scharowsky Str. 1, 91058 Erlangen, Germany
Open access

Silicon nanorods were produced by the vapor—liquid—solid process and by wet chemical etching as possible candidates for solar cells. The nanostructures of Si nanorods formed by the two different processes are investigated and compared by transmission electron microscopy. The first type of nanorods was formed from bulk Si by wet-chemical top-down etching using Ag particles as catalyst. They exhibit a perfect crystalline structure but a wide distribution of diameter. The cross section of these rods is irregular, no faceting is observed, and the shape of the cross section depends on the random arrangement of the Ag particles. The etched rods are mostly parallel to the substrate normal as it is expected. The second type of nanorods was grown on Si substrate by the bottom-up vapor—liquid—solid method using gold as a catalyst and silane as silicon source. These nanorods exhibit a single crystalline structure with twin boundaries and some kinks. The cross section of these rods is almost circular, but faceting is often observed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1.

    Duan X , Huang Y, Cui Y, Wang J, Lieber CM: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 6669 (2001)

    • Search Google Scholar
    • Export Citation
  • 2.

    Gudiksen MS , Wang J, Lieber CM: Synthetic control of the diameter and length of single crystal semiconductor nanowires. J Phys Chem B 105, 40624064 (2001)

    • Search Google Scholar
    • Export Citation
  • 3.

    Sivakov V , Andrä G, Gawlik A, Berger A, Plentz J, Falk F, Christiansen SH: Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett 9, 15491554 (2009)

    • Search Google Scholar
    • Export Citation
  • 4.

    Tsakalakos L , Balch J, Fronheiser J, Korevaar A, Sulima O, Rand J: Silicon nanowire solar cells. Appl Phys Lett 91, 233117 (2007)

  • 5.

    Kayes BM , Lewis NS, Atwater HA: Comparison of the device physics principles of planar and radial p–n junction nanorod solar cells. J Appl Phys 97, 114302 (2005)

    • Search Google Scholar
    • Export Citation
  • 6.

    Sivakov V , Voigt F, Hoffmann B, Gerliz V, Christiansen S: Wet –chemically etched silicon nanowire architectures: formation and properties. In Hashim A (Ed.) Nanowires — Fundamental Research. Intech, Rijeka 2011, pp 4580

    • Search Google Scholar
    • Export Citation
  • 7.

    Oh J , Yuan H-C, Branz HM: An 18.2%-efficient blacksilicon solar cell achieved through control of carrier recombination in nanostructures. Nat Nanotechnol 7, 743748 (2012)

    • Search Google Scholar
    • Export Citation
  • 8.

    Branz HM , Yost VE, Ward S, Jones KM, To B, Stradins P: Nanostructured black silicon and the optical reflectance of graded-density surfaces. Appl Phys Lett 94, 231121 (2009)

    • Search Google Scholar
    • Export Citation
  • 9.

    Wagner RS , Ellis WC: Vapor–liquid–solid mechanism of single crystal growth. Appl Phys Lett 4, 89 (1964)

  • 10.

    Huang Z , Zhang X, Reiche M, Liu L, Lee W, Shimizu T, Senz S, Gösele U: Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. Nano Lett 8, 3046 (2008)

    • Search Google Scholar
    • Export Citation
  • 11.

    Peng KQ , Wu Y, Fang H, Zhong XY, Xu Y, Zhu J: Uniform, axial-orientation alignment of one-dimensional singlecrystal silicon nanostructure arrays. Angew Chem Int Ed 44, 18, 27372742 (2005)

    • Search Google Scholar
    • Export Citation
  • 12.

    Fang H , Wu Y, Zhao J, Zhu J: Silver catalysis in the fabrication of silicon nanowire arrays. Nanotechnology 17, 3783774 (2006)

  • 13.

    Sivakov VA , Bronstrup G, Pecz B, Berger A, Radnoczi GZ, Krause M, Christiansen SH: Realization of vertical and zigzag single crystalline silicon nanowire architectures. J Phys Chem. C 114, 37983803 (2010)

    • Search Google Scholar
    • Export Citation
  • 14.

    Knauer A , Thete A, Li S, Romanus H, Csáki A, Fritzsche W, Köhler J: Au/Ag/Au double shell nanoparticles with narrow size distribution obtained by continuous micro segmented flow synthesis. Chem Eng J 166, 11641169 (2011)

    • Search Google Scholar
    • Export Citation
  • 15.

    Sáfrán G , Grenet T: Novel method for the plan-view TEM preparation of thin samples on brittle substrates by mechanical and ion beam thinning. Microsc Res Tech 56, 308314 (2002)

    • Search Google Scholar
    • Export Citation
  • 16.

    Radnóczi GZ , Pécz B: Transmission electron microscope specimen preparation for exploring the buried interfaces in plan view. J Microsc 224, 328331 (2006)

    • Search Google Scholar
    • Export Citation
  • 17.

    Shi J , Wang X: Functional semiconductor nanowires via vapor deposition. J Vac Sci Technol B 29, 060801 (2011)

  • 18.

    Gösele U : Nanotechnology. how clean is too clean? Nature 440, 34 (2006)

  • 19.

    Allen JE , Hemesath ER, Perea DE, Lensch-Falk JL, Li ZY, Yin F, Gass MH, Wang P, Bleloch AL, Palmer RE, Lauhon LJ: High-resolution detection of Au catalyst atoms in Si nanowires. Nat Nanotechnol 3, 168173 (2008)

    • Search Google Scholar
    • Export Citation
  • 20.

    Putnam MC , Filler MA, Kayes BM, Kelzenberg MD, Guan Y, Lewis NS, Eiler JM, Atwater HA: Secondary ion mass spectrometry of vapor–liquid–solid grown, Au-catalyzed, Si wires. Nano Lett 8, 3109 (2008)

    • Search Google Scholar
    • Export Citation
  • 21.

    Hannon JB , Kodambaka S, Ross FM, Tromp RM: The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 6971 (2006)

    • Search Google Scholar
    • Export Citation
  • 22.

    Dupre L , Buttard D, Leclere C, Renevier H, Gentile P: Gold contamination in VLS-grown Si nanowires: multiwavelength anomalous diffraction investigations. Chem Mater 24, 4511 (2012)

    • Search Google Scholar
    • Export Citation

You can download the Article Template Guideline from HERE



Language: English

Founded in 2015
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 5.

Publishing Model: Gold Open Access (for details click HERE.)
Article Processing Charge: No author fee
No article submission charges
Articles are archived by Portico

Indexing and Abstracting Services:

  • DOAJ

Senior editors

Editor(s)-in-Chief: Béla Pécz

Managing Editor(s): Katalin Balázsi

Co-Editor-in-Chief: Rafal Dunin-Borkowski
(for theory and microscopy techniques)

Co-Editor-in-Chief: Pavel Hozak
(for biomedical sciences)

Editorial Board

  • Filippo Giannazzo - Consiglio Nazionale delle Ricerche (CNR), Institute for Microelectronics and Microsystems (IMM), Catania, Italy
  • Werner Grogger - FELMI, Graz University of Technology, Graz, Austria
  • János Lábár - Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary
  • Erik Manders - Faculty of Science, SILS, University of Amsterdam, Amsterdam, The Netherlands
  • Ohad Medalia - Department of Biochemistry, Zürich University, Zürich, Switzerland
  • Rainer Pepperkok - EMBL, Heidelberg, Germany
  • Aleksander Recnik - J. Stefan Institute, Ljubljana, Slovenia
  • Sara Sandin - Division of Structural Biology & Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore
  • Nobuo Tanaka - Electron microscope Lab., Ecotopia Science Institute and Dept. of Applied Physics, Nagoya University, Japan
  • Paul Verkade - Wolfson Bioimaging Facility, Schools of Biochemistry and Physiology & Pharmacology, Biomedical Sciences Building, University of Bristol, Bristol, UK

Dr Pécz, Béla
Resolution and Discovery
Institute of Technical Physics and Materials Science
Centre for Energy Research, Hungarian Academy of Sciences
H-1525 Budapest, PO Box 49, Hungary