View More View Less
  • 1 Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, D-52425 Jülich, Germany
  • | 2 University College London, Torrington Place, London WC1E 7JE, United Kingdom
Open access

Silicon oxide-based resistive switching devices show great potential for applications in nonvolatile random access memories. We expose a device to voltages above hard breakdown and show that hard oxide breakdown results in mixing of the SiOx layer and the TiN lower contact layers. We switch a similar device at sub-breakdown fields in situ in the transmission electron microscope (TEM) using a movable probe and study the diffusion mechanism that leads to resistance switching. By recording bright-field (BF) TEM movies while switching the device, we observe the creation of a filament that is correlated with a change in conductivity of the SiOx layer. We also examine a device prepared on a microfabricated chip and show that variations in electrostatic potential in the SiOx layer can be recorded using off-axis electron holography as the sample is switched in situ in the TEM. Taken together, the visualization of compositional changes in ex situ stressed samples and the simultaneous observation of BF TEM contrast variations, a conductivity increase, and a potential drop across the dielectric layer in in situ switched devices allow us to conclude that nucleation of the electroforming—switching process starts at the interface between the SiOx layer and the lower contact.

  • 1.

    Saleh MN , Venkatachalam DK, Elliman RG: Effect of crystallization on the reliability of unipolar resistive-switching in HfO2-based dielectrics. Curr Appl Phys 14, S88S92 (2014)

    • Search Google Scholar
    • Export Citation
  • 2.

    Waser R , Dittmann R, Staikov G, Szot K: Redox-based resistive switching memories — nanoionic mechanisms, prospects, and challenges. Adv Mater 21, 26322663 (2009)

    • Search Google Scholar
    • Export Citation
  • 3.

    Strukov DB , Alibart F, Williams RS: Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors. Appl Phys A 107, 509518 (2012)

    • Search Google Scholar
    • Export Citation
  • 4.

    Jeong DS , Schroeder H, Waser R: Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack. Electrochem Solid-State Lett 10, G51G53 (2007)

    • Search Google Scholar
    • Export Citation
  • 5.

    Schindler C , Thermadam SCP, Waser R, Kozicki MN: Bipolar and unipolar resistive switching in Cu-doped SiO2. IEEE Trans Electron Devices 54, 27622768 (2007)

    • Search Google Scholar
    • Export Citation
  • 6.

    Yao J , Sun Z, Zhong L, Natelson D, Tour JM: Resistive switches and memories from silicon oxide. Nano Lett 10, 41054110 (2010)

  • 7.

    Mehonic A , Cueff S, Wojdak M, Hudziak S, Jambois O, Labbé C, Garrido B, Rizk R, Kenyon AJ: Resistive switching in silicon suboxide films, J. Appl. Phys. 111, 74507 (2012)

    • Search Google Scholar
    • Export Citation
  • 8.

    Mehonic A , Cueff S, Wojdak M, Hudziak S, Labbé C, Rizk R, Kenyon AJ: Electrically tailored resistance switching in silicon oxide, Nanotechnology. 23, 455201 (2012)

    • Search Google Scholar
    • Export Citation
  • 9.

    Chen J-Y , Hsin C-L, Huang C-W, Chiu C-H, Huang Y-T, Lin S-J, Wu W-W, Chen L-J: Chen, Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories. Nano Lett. 13, 3671 (2013)

    • Search Google Scholar
    • Export Citation
  • 10.

    Buckwell M , Montesi L, Hudziak S, Mehonic A, Kenyon AJ: Conductance tomography of conductive filaments in intrinsic silicon-rich silica RRAM. Nanoscale 7, 18030 (2015)

    • Search Google Scholar
    • Export Citation
  • 11.

    Privitera S , Bersuker G, Butcher B, Kalantarian A, Lombardo S, Bongiorno C, Geer R, Gilmer DC, Kirsch PD: Microscopy study of the conductive filament in HfO2 resistive switching memory devices, Microelectron. Eng. 109, 75 (2013)

    • Search Google Scholar
    • Export Citation
  • 12.

    Lee D , Sung Y, Lee I, Kim J, Sohn H, Ko D-H: Enhanced bipolar resistive switching of HfO2 with a Ti interlayer, Appl. Phys. A. 102, 997 (2011)

    • Search Google Scholar
    • Export Citation
  • 13.

    Kamaladasa RJ , Sharma AA, Lai Y-T, Chen W, Salvador PA, Bain JA, Skowronski M, Picard YN: In situ TEM Imaging of Defect Dynamics under Electrical Bias in Resistive Switching Rutile-TiO2, Microsc. Microanal. 21, 140 (2015)

    • Search Google Scholar
    • Export Citation
  • 14.

    Yang Y , Gao P, Gaba S, Chang T, Pan X, Lu W: Observation of conducting filament growth in nanoscale resistive memories, Nat. Commun. 3, 732 (2012)

    • Search Google Scholar
    • Export Citation
  • 15.

    Fujii T , AritaM, Takahashi Y, Fujiwara I: In situ transmission electron microscopy analysis of conductive filament during solid electrolyte resistance switching. Appl Phys Lett 98, 212104 (2011)

    • Search Google Scholar
    • Export Citation
  • 16.

    Tian X , Yang S, Zeng M, Wang L, Wei J, Xu Z, Wang W, Bai X: Bipolar Electrochemical Mechanism for Mass Transfer in Nanoionic Resistive Memories, Adv. Mater. 26, 3649 (2014)

    • Search Google Scholar
    • Export Citation
  • 17.

    Yao J , Sun Z, Zhong L, Natelson D, Tour JM: Resistive Switches and Memories from Silicon Oxide, Nat Comm 4, 2764 (2013)

  • 18.

    Buckwell M , Montesi L, Mehonic A, Reza O, Garnett L, Munde M, Hudziak S, Kenyon AJ: Microscopic and spectroscopic analysis of the nature of conductivity changes during resistive switching in silicon-rich silicon oxide, Phys. Status Solidi C. 12, 211 (2015)

    • Search Google Scholar
    • Export Citation
  • 19.

    Migunov V , Ryll H, Zhuge X, Simson M, Strüder L, Batenburg KJ, Houben L, Dunin-Borkowski RE: Rapid low dose electron tomography using a direct electron detection camera, Sci. Rep. 5, 14516 (2015)

    • Search Google Scholar
    • Export Citation
  • 20.

    Wedig A , Luebben M, Cho D-Y, Moors M, Skaja K, Rana V, Hasegawa T, Adepalli KK, Yildiz B, Waser R, Valov I: Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nat Nanotechnol 11, 67 (2015)

    • Search Google Scholar
    • Export Citation
  • 21.

    Mehonic A , Buckwell M, Montesi L, Garnett L, Hudziak S, Fearn S, Chater R, McPhail D, Kenyon AJ: Structural changes and conductance thresholds in metal-free intrinsic SiOx resistive random access memory. J Appl Phys 117, 124505 (2015)

    • Search Google Scholar
    • Export Citation
  • 22.

    Duchamp M , den Hertog M, Imlau R, Boothroyd CB, Kovacs A, Tavabi AH, Dunin-Borkowski RE: Focused ion beam specimen preparation for electron holography of electrically biased thin film solar cells, in: Rachel R (Ed.), Microsc. Conf. MC2013 Regensbg. Ger. 25-30 August 2013, Regensburg, 2013: pp. 242243. http://epub.uniregensburg.de/28734/1/MC2013_Proceedings_Part_I.pdf.

    • Search Google Scholar
    • Export Citation
  • 23.

    Duchamp M , Xu Q, Dunin-Borkowski RE: Convenient Preparation of High-Quality Specimens for Annealing Experiments in the Transmission Electron Microscope, Microsc. Microanal. 20, 1638 (2014)

    • Search Google Scholar
    • Export Citation
  • 24.

    Migunov V , London A, Farle M, Dunin-Borkowski RE: Model-independent measurement of the charge density distribution along an Fe atom probe needle using off-axis electron holography without mean inner potential effects. J. Appl. Phys. 117, 134301 (2015)

    • Search Google Scholar
    • Export Citation