View More View Less
  • 1 Semmelweis Egyetem, 1085 Budapest, Üllői út 26.
  • 2 Keszthelyi Kórház, Keszthely
Open access

Absztrakt:

Az endogén T-sejtek genetikai manipulációjával létrehozott kiméra antigén receptorral felruházott T-sejtek (CAR-T) ma az egyik legújabb és legnagyobb potenciállal rendelkező terápiás alternatívát jelentik az onkológiában, elsősorban a hematológiai, azon belül is B-sejtes malignitások körében. A CAR-T-sejtek ötvözik a T-sejtek effektor működését, illetve a B-sejtek antigénfelismerő képességét, megkerülve ezzel az endogén T-sejtek antigénprocesszálás, antigénprezentáció és kostimuláció iránti igényét. A haematológiai malignitások között a legjobb eredmények CAR-T-kezeléssel gyermekkori-, illetve felnőtt relabáló/refrakter B-sejtes akut lymphomblastos leukémiában vannak akár 70–90%-os komplett remisszió aránnyal. Hasonlóan ígéretesek a kezdeti vizsgálatok többek között diffúz nagy B-sejtes lymphomában, follikuláris lymphomában és krónikus lymphocytás leukaemiában. A mellékhatások közül messze a leggyakoribb, akár 80%-ban előfordulhat a gyakran rendkívül súlyos, akár letális formában megjelenő citokinfelszabadulási szindróma. A jelenleg folyó intenzív kutatások éppen ezért a CAR-T-sejtek újabb generációjának jobb irányíthatóságára, kombinációk alkalmazására, illetve a további problémát jelentő óriási előállítási költségek csökkentésére irányulnak. Ezen összefoglaló mind a jelenlegi CAR-T repertoár ismertetését, mind a terápia kihívásainak és a potenciális megoldásoknak felvázolását célozza, ezzel betekintést engedve az tumorterápia egyik legígéretesebb pillérjének kibontakozásába.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Maloney DG, Press OW. Newer treatments for non-Hodgkin’s lymphoma: monoclonal antibodies. Oncology (Williston Park) 1998; 12: 63–76.

  • 2

    Quintas-Cardama A. CD19 directed CAR T cell therapy in diffuse large B-cell lymphoma. Oncotarget 2018; 9: 29843–29844.

  • 3

    Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002; 3: 991–998.

  • 4

    Kobold S, Krackhardt A, Schlosser H, et al. [Immuno-Oncology: A Brief Overview]. Dtsch Med Wochenschr. 2018; 143: 1006–1013.

  • 5

    Oren R, Hod-Marco M, Haus-Cohen M, et al. Functional comparison of engineered T cells carrying a native TCR versus TCR-like antibody-based chimeric antigen receptors indicates affinity/avidity thresholds. J Immunol. 2014; 193: 5733–5743.

  • 6

    Srivastava S, Riddell SR. Engineering CAR-T cells: Design concepts. Trends Immunol. 2015; 36: 494–502.

  • 7

    van der Stegen SJ, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov. 2015; 14: 499–509.

  • 8

    Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther. 2015; 15: 1145–1154.

  • 9

    Maus MV, Levine BL. Chimeric antigen receptor T-cell therapy for the Community Oncologist. Oncologist. 2016; 21: 608–617.

  • 10

    Tanaka J, Mielcarek M, Torok-Storb B. Impaired induction of the CD28-responsive complex in granulocyte colony-stimulating factor mobilized CD4 T cells. Blood 1998; 91: 347–352.

  • 11

    Shank BR, Do B, Sevin A, et al. Chimeric antigen receptor T cells in hematologic malignancies. Pharmacotherapy 2017; 37: 334–345.

  • 12

    Zhang C, Liu J, Zhong JF, et al. Engineering CAR-T cells. Biomark Res. 2017; 5: 22.

  • 13

    Hartmann J, Schussler-Lenz M, Bondanza A, et al. Clinical development of CAR T cells – challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med. 2017; 9: 1183–1197.

  • 14

    Frey NV, Porter DL. The promise of chimeric antigen receptor T‑cell therapy. Oncology (Williston Park) 2016; 30.

  • 15

    Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 2015; 385: 517–528.

  • 16

    Kochenderfer JN, Dudley ME, Kassim SH, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015; 33: 540–549.

  • 17

    Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014; 6: 224–225.

  • 18

    Pan J, Yang JF, Deng BP, et al. High efficacy and safety of low-dose CD19-directed CAR-T cell therapy in 51 refractory or relapsed B acute lymphoblastic leukemia patients. Leukemia 2017; 31: 2587–2593.

  • 19

    Zhao Z, Chen Y, Francisco NM, et al. The application of CAR-T cell therapy in hematological malignancies: advantages and challenges. Acta Pharm Sin. B 2018; 8: 539–551.

  • 20

    Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014; 371: 1507–1517.

  • 21

    Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018; 378: 439–448.

  • 22

    Shalabi H, Angiolillo A, Fry TJ. Beyond CD19: Opportunities for future development of targeted immunotherapy in pediatric relapsed-refractory acute leukemia. Front Pediatr. 2015; 3: 80.

  • 23

    Zah E, Lin MY, Silva-Benedict A, et al. T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res. 2016; 4: 498–508.

  • 24

    Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene Ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017; 377: 2531–2544.

  • 25

    Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019; 380: 45–56.

  • 26

    Havard R, Stephens DM. Anti-CD19 chimeric antigen receptor T cell therapies: Harnessing the power of the immune system to fight diffuse large B cell lymphoma. Curr Hematol Malig Rep. 2018; 13: 534–542.

  • 27

    Chavez JC, Bachmeier C, Kharfan-Dabaja MA. CAR T-cell therapy for B-cell lymphomas: clinical trial results of available products. Ther Adv Hematol. 2019; 10: 2040620719841581.

  • 28

    Maloney DG, Abramson JS, Palomba ML, et al. Preliminary safety profile of the CD19-directed defined composition CAR T cell product JCAR017 in relapsed/refractory aggressive B-NHL patients: Potential for outpatient administration. 2017; 130: 1552–1552.

  • 29

    Garfall AL, Stadtmauer EA, Hwang WT, et al. Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma. JCI Insight 2018; 3.

  • 30

    Porter DL, Frey NV, Melenhorst JJ, et al. Randomized, Phase II dose optimization study of chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed, refractory CLL. 2014; 124: 1982–1982.

  • 31

    Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011; 365: 725–733.

  • 32

    Bair SM, Porter DL. Accelerating chimeric antigen receptor therapy in chronic lymphocytic leukemia: The development and challenges of chimeric antigen receptor T-cell therapy for chronic lymphocytic leukemia. Am J Hematol. 2019; 94: S10–S17.

  • 33

    Fraietta JA, Beckwith KA, Patel PR, et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood 2016; 127: 1117–1127.

  • 34

    Arndt C, Bachmann M, Bergmann R, et al. Theranostic CAR T cell targeting, a brief review. J Labelled Comp Radiopharm. 2019.

  • 35

    Minagawa K, Al-Obaidi M, Di Stasi. A generation of suicide gene-modified chimeric antigen receptor-redirected T-cells for cancer immunotherapy. Methods Mol Biol. 2019; 1895: 57–73.

  • 36

    Duong MT, Collinson-Pautz MR, Morschl E, et al. Two-dimensional regulation of CAR-T cell therapy with orthogonal switches. Mol Ther Oncolytics 2019; 12: 124–137.

  • 37

    Benjamin R. Advances in off-the-shelf CAR T-cell therapy. Clin Adv Hematol Oncol. 2019; 17: 155–157.

  • 38

    Cartellieri M, Loff S, von Bonin M, et al. Unicar: A novel modular retargeting platform technology for CAR T cells. 2015; 126: 5549–5549.

  • 39

    Hu Y. Novel CD19/CD22 dual targeting CAR-T cells have prominent anti-tumor activity against relapsed/refractory B-cell lymphoma. 45th EBMT Annual Meeting, Frankfurt, Germany. 2019; Abstract OS20-2.

  • 40

    Orlando EJ, Han X, Tribouley C, et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med. 2018; 24: 1504–1506.

  • 41

    Oberley MJ, Gaynon PS, Bhojwani D, et al. Myeloid lineage switch following chimeric antigen receptor T-cell therapy in a patient with TCF3-ZNF384 fusion-positive B-lymphoblastic leukemia. Pediatr Blood Cancer 2018; 65: e27265.

  • 42

    Stone JD, Aggen DH, Schietinger A, et al. A sensitivity scale for targeting T cells with chimeric antigen receptors (CARs) and bispecific T-cell Engagers (BiTEs). Oncoimmunology 2012; 1: 863–873.

  • 43

    Tang J, Shalabi A, and Hubbard-Lucey VM. Comprehensive analysis of the clinical immuno-oncology landscape. Ann Oncol. 2018; 29: 84v91.

  • 44

    Suzuki S, Ishida T, Yoshikawa K, et al. Current status of immunotherapy. Japanese Journal of Clinical Oncology 2016; 46: 191–203.