View More View Less
  • 1 Országos Vérellátó Szolgálat, Budapest
  • | 2 Semmelweis Egyetem, Budapest
  • | 3 Dél-pesti Centrumkórház, 1097 Budapest, Albert Flórián utca 5–7.
  • | 4 Semmelweis Egyetem, Budapest
Open access

Absztrakt:

Klinikai szempontból az ABO a legjelentősebb vércsoportrendszer, amelyről a korábbi kiterjedt kutatások ellenére még mindig jelentős új felfedezések születnek. A vércsoportrendszer genetikai hátterének felderítése tette lehetővé, hogy a kereskedelmi forgalomban több ABO genotípus meghatározási módszer is elérhető legyen. A jelen tanulmány célja az ellentmondó ABO vércsoport-szerológiai eredmények bemutatása esettanulmányok segítségével, a lehetséges klinikai és genetikai okok összefoglalása és az ellentmondások feloldására használható megoldások bemutatása különös tekintettel a molekuláris genetikai módszerekre. Esettanulmányainkban kitérünk az onkohematológiai betegségek kapcsán gyakori csökkent A és B antigénkifejeződésre, valamint a genetikai ABO alcsoportokra. Az esetbemutatásokat követően irodalmi áttekintést adunk az ABO vércsoportrendszer alcsoportvariánsairól, valamint olyan, több ezer személy genetikai hátterét vizsgáló populációs tanulmányokat mutatunk be, amelyek a vércsoportrendszerek genetikai variánsait részletező Erythrogene adatbázis alapjául is szolgáltak.

  • 1

    Stenfelt L, Hellberg A, Moller M, et al. Missense mutations in the C-terminal portion of the B4GALNT2-encoded glycosyltransferase underlying the Sd(a-) phenotype. Biochem Biophys Rep. 2019; 19: 100659.

  • 2

    Omae Y, Ito S, Takeuchi M, et al. Integrative genome analysis identified the KANNO blood group antigen as prion protein. Transfusion 2019; 59: 2429–2435.

  • 3

    Klein HG, Anstee DJ. Mollison’s Blood Transfusion in Clinical Medicine, 12th edition. John Wiley & Sons. Ltd. 2014; 4: 118–166.

  • 4

    Daniels G. Human Blood Groups 3rd edition. Blackwell Publishing Ltd. 2013; 3: 11–95.

  • 5

    Meny GM. Recognizing and resolving ABO discrepancies. Immunohematology 2017; 33: 76–81.

  • 6

    Moller M, Hellberg A, Olsson ML. Thorough analysis of unorthodox ABO deletions called by the 1000 Genomes project. Vox Sang. 2018; 113: 185–197.

  • 7

    Moller M, Joud M, Storry JR, et al. Erythrogene: a database for in-depth analysis of the extensive variation in 36 blood group systems in the 1000 Genomes Project. Blood Adv. 2016; 1: 240–249.

  • 8

    Diao JA, Kohane IS, Manrai AK. Biomedical informatics and machine learning for clinical genomics. Hum Mol Genet. 2018; 27: 29–34.

  • 9

    Haeussler M, Zweig AS, Tyner C, et al. The UCSC Genome Browser database: 2019 update. Nucleic Acids Res. 2019; 47: 853–858.

  • 10

    Karczewski KJ, Weisburd B, Thomas B, et al. The ExAC browser: displaying reference data information from over 60 000 exomes. Nucleic Acids Res. 2017; 45: 840–845.

  • 11

    Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016; 536: 285–291.

  • 12

    Muzny DM, Bainbridge MN, Chang K, et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487: 330–337.

  • 13

    Koboldt DC, Fulton RS, McLellan MD, et al. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

  • 14

    Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol. 2015; 19: 68–77.

  • 15

    Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Science 2013; 339: 1546–1558.

  • 16

    Patnaik SK, Helmberg W, Blumenfeld OO. BGMUT: NCBI dbRBC database of allelic variations of genes encoding antigens of blood group systems. Nucleic Acids Res. 2012; 40: 1023–1029.

  • 17

    Patnaik SK, Helmberg W, Blumenfeld OO. BGMUT database of allelic variants of genes encoding human blood group antigens. Transfus Med Hemother. 2014; 41: 346–351.

  • 18

    Names for ABO (ISBT 001) Blood Group Alleles. International Society of Blood Transfusion (ISBT). Blood Group Allele Terminology. Available at: http://www.isbtweb.org/working-parties/red-cell-immunogenetics-and-blood-group-terminology/.  [accessed 23 October 2017].

  • 19

    Zhang W, Liu J, Zhang W, et al. The potential association of the transcription levels of the ABO gene with the disease phases in AML patients. Transfus Apher Sci. 2017; 56: 719–722.

  • 20

    Vezendi K. Transfusion. [Transzfúzió.] Medicina könyvkiadó, Budapest, 2014; pp. 33–93. [Hungarian]

  • 21

    Makroo RN, Kakkar B, Agrawal S, et al. Retrospective analysis of forward and reverse ABO typing discrepancies among patients and blood donors in a tertiary care hospital. Transfus Med. 2019; 29: 103–109.

  • 22

    Yudin J, Heddle NM. A 13-question approach to resolving serological discrepancies in the transfusion medicine laboratory. Lab Med. 2014; 45: 193–206.

  • 23

    Akkok CA, Seghatchian J. Immunohematologic issues in ABO-incompatible allogeneic hematopoietic stem cell transplantation. Transfus Apher Sci. 2018, 57: 812–815.

  • 24

    Sharpe C, Lane D, Cote J, et al. Mixed field reactions in ABO and Rh typing chimerism likely resulting from twin haematopoiesis. Blood Transfus. 2014; 12: 608–610.

  • 25

    Wu PC, Lin YH, Tsai LF, et al. ABO genotyping with next-generation sequencing to resolve heterogeneity in donors with serology discrepancies. Transfusion 2018; 58: 2232–2242.

  • 26

    Chaurasia R, Rout D, Dogra K, et al. Discrepancy in Blood Grouping: Subgroups of B-Challenges and Dilemma. Indian J Hematol Blood Transfus. 2017; 33: 628–629.

  • 27

    Huang H, Jin S, Liu X et al. Molecular genetic analysis of weak ABO subgroups in the Chinese population reveals ten novel ABO subgroup alleles. Blood Transfus. 2018; 1–6.

  • 28

    Lang K, Wagner I, Schone B et al. ABO allele-level frequency estimation based on population-scale genotyping by next generation sequencing. BMC Genomics 2016; 17: 374.

  • 29

    Cai X, Jin S, Liu X et al. Molecular genetic analysis of ABO blood group variations reveals 29 novel ABO subgroup alleles. Transfusion 2013; 53: 2910–2916.

  • 30

    Fichou Y, Audrezet MP, Gueguen P, et al. Next-generation sequencing is a credible strategy for blood group genotyping. Br J Haematol. 2014; 167: 554–562.

  • 31

    Hyland CA, Roulis EV, Schoeman EM. Developments beyond blood group serology in the genomics era. Br J Haematol. 2019; 184: 897–911.

  • 32

    Lek M, Karczewski KJ, Minikel EV et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016; 536: 285–291.

  • 33

    Montemayor-Garcia C, Karagianni P, Stiles DA et al. Genomic coordinates and continental distribution of 120 blood group variants reported by the 1000 Genomes Project. Transfusion 2018; 58: 2693–2704.

  • 34

    Tilley L, Grimsley S. Is Next Generation Sequencing the future of blood group testing? Transfus Apher Sci. 2014; 50: 183–188.

  • 35

    Hult AK, McSherry E, Moller M, et al. GBGT1 is allelically diverse but dispensable in humans and naturally occurring anti-FORS1 shows an ABO-restricted pattern. Transfusion 2018; 58: 2036–2045.

  • 36

    Sharma T, Garg N, Singh B. ABO blood group discrepancies among blood donors in Regional Blood Transfusion Centre GTB Hospital, Delhi, India. Transfus Apher Sci. 2014; 50: 75–80.

  • 37

    Chiaroni J, Legrand D, Dettori I, et al. Analysis of ABO discrepancies occurring in 35 French hospitals. Transfusion 2004; 44: 860–864.

  • 38

    Narayan S, Bellamy M, Spinks C, et al. The 2018 Annual SHOT Report 2019; 3: 11–18.