A COVID–19 a SARS-CoV-2 vírus által okozott, járványosan terjedő, légúti kiindulású betegség. A kórokozó magas patogenitású, zoonotikus eredetű humán coronavírus, mely hatékonyan terjed emberről emberre cseppfertőzéssel és közeli kontaktussal. A medián lappangási idő 5 nap, a maximum 14 nap. A COVID–19 kardinális tünetei a láz, dyspnoe és száraz köhögés. Az esetek 80%-a enyhe lefolyású, 5%-ban azonban intenzív terápiás ellátás és gépi lélegeztetés válik szükségessé. A COVID–19 akár súlyos, az egész szervezetre kiterjedő citokinvihart is kiválthat, mely gyors beavatkozás nélkül végzetes kimenetelű lehet. Jelen összefoglaló – melyet a diagnosztikai és terápiás szempontokat tárgyaló társközlemény követ – a betegséggel kapcsolatban 2020. május 25-ig elérhető legfőbb nemzetközi és hazai irodalmi eredményeket ismerteti; elsősorban, de nem kizárólag hematológus kollégák számára.
Szabó B. In the middle of a new pandemic – what we know about COVID–19. [Egy új világjárvány közepén – amit eddig a COVID–19-ről tudni vélünk.] Orvostovábbképző Szemle 2020. [Hungarian]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270–273.
Tang X, Wu C, Li X, et al. On the origin and continuing evolution of SARS-CoV-2. Nat Sci Rev. 2020. [epub, accessed: May 25, 2020]
Ceraolo C, Giorgi FM. Genomic variance of the 2019-nCoV coronavirus. J Med Virol. 2020; 92(5): 522–528.
WHO. Novel Coronavirus (2019-nCoV) Situation Report – 12. 2020.
WHO. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020.
Kemenesi G, Zeghbib S, Somogyi BA, et al. Multiple SARS-CoV-2 introductions shaped the early outbreak in Central Eastern Europe: comparing Hungarian data to a worldwide sequence data-matrix. medRxiv 2020. [epub, accessed: May 25, 2020]
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020; 26(4): 450–452.
Shi J, Wen Z, Zhong G, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science 2020. [epub, accessed: May 25, 2020]
Cevik M, Bamford CGG, Ho A. COVID-19 pandemic-a focused review for clinicians. Clin Microbiol Infect. 2020. [epub, accessed: May 25, 2020]
CDC. How COVID-19 Spreads. Available from: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html [accessed: May 25, 2020]
van Doremalen N, Bushmaker T, Morris D, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. NEJM 2020. [epub, accessed: May 25, 2020]
Hui KPY, Cheung M-C, Perera RAPM, et al. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures. Lancet Resp Med. 2020. [epub, accessed: May 25, 2020]
Groß R, Conzelmann C, Müller JA, et al. Detection of SARS-CoV-2 in human breastmilk. Lancet 2020. [epub, accessed: May 25, 2020]
Meselson M. Droplets and aerosols in the transmission of SARS-CoV-2. NEJM 2020. [epub, accessed: May 25, 2020]
Anfinrud P, Stadnytskyi V, Bax C, Bax A. Visualizing speech-generated oral fluid droplets with laser light scattering. NEJM 2020. [epub, accessed: May 25, 2020]
NEJM JWatch. SARS-CoV-2 may be transmissible by normal breathing. Available from: https://www.jwatch.org/fw116519/2020/04/05/sars-cov-2-may-be-transmissible-normal-breathing-cloth [accessed: May 25, 2020]
He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020; 26(5): 672–675.
Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2). Science 2020. [epub, accessed: May 25, 2020]
CDC. Asymptomatic and Presymptomatic SARS-CoV-2 Infections in Residents of a Long-Term Care Skilled Nursing Facility — King County, Washington, March 2020. MMRW 2020; 69(13): 377–381.
CDC. Presymptomatic Transmission of SARS-CoV-2 — Singapore, January 23–March 16, 2020. MMRW 2020; 69(14): 411–415.
Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro Surveill. 2020; 25(4): 1–10.
Reuters. How coronavirus cases exploded in South Korean churches and hospitals. Available from: https://graphics.reuters.com/CHINA-HEALTH-SOUTHKOREA-CLUSTERS/0100B5G33SB/index.html [accessed: May 25, 2020]
Zhou G, Chen S, Chen Z. Advances in COVID-19: the virus, the pathogenesis, and evidence-based control and therapeutic strategies. Front Med. 2020; 14(2): 117–125.
Pampel J. SARS-CoV-2 Life Cycle: Stages and Inhibition Targets. Available from: https://www.antibodies-online.com/resources/18/5410/sars-cov-2-life-cycle-stages-and-inhibition-targets/ [accessed: May 25, 2020]
Vabret N, Britton GJ, Gruber C, et al. Immunology of COVID-19: current state of the science. Immunity 2020.
Matricardi PM, Dal Negro RW, Nisini R. The first, holistic immunological model of COVID-19: implications for prevention, diagnosis, and public health measures. Pediatr Allergy Immunol. 2020. [epub, accessed: May 25, 2020]
Wang X, Xu W, Hu G, et al. SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. Cell Mol Immunol. 2020. [epub, accessed: May 25, 2020]
Xu X, Gao X. Immunological responses against SARS-coronavirus infection in humans. Cell Mol Immunol. 2004; (2): 119–122.
Liu Z, Long W, Tu M, et al. Lymphocyte subset (CD4+, CD8+) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19. J Infect. 2020. [epub, accessed: May 25, 2020]
Xiao AT, Gao C, Zhang S. Profile of specific antibodies to SARS-CoV-2: The first report. J Infect. 2020. [epub, accessed: May 25, 2020]
Wan S, Yi Q, Fan S, et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Br J Haematol. 2020; 189(3): 428–437.
Szekanecz Z, Rákóczi É, Bálint P, et al. Immunological and rheumatologic aspects of COVID-19. [A COVID–19 immunológiai és reumatológiai vonatkozásai.] Immunol Szemle 2020. [epub, accessed: May 25, 2020] [Hungarian]
Lindsley AW, Schwartz JT, Rothenberg ME. Eosinophil responses during COVID-19 infections and coronavirus vaccination. J Allergy Clin Immunol. 2020. [epub, accessed: May 25, 2020]
Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020. [epub, accessed: May 25, 2020]
Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020. [epub, accessed: May 25, 2020]
To KK-W, Tsang OT-Y, Leung W-S, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Inf Dis. 2020; 20(5): 565–574.
Bao L, Deng W, Gao H, et al. Lack of reinfection in Rhesus macaques infected with SARS-CoV-2. bioRxiv 2020. [epub, accessed: May 25, 2020]
Korber B, Fischer WM, Gnanakaran S, et al. Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv 2020. [epub, accessed: May 25, 2020]
Bennett CE, Anavekar NS, Gulati R, et al. ST-segment elevation, myocardial injury, and suspected or confirmed COVID-19 patients: Diagnostic and treatment uncertainties. Mayo Clin Proc. 2020. [epub, accessed: May 25, 2020]
Escher R, Breakey N, Lammle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020; 190: 62.
Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020. [epub, accessed: May 25, 2020]
Zhou B, She J, Wang Y, et al. The clinical characteristics of myocardial injury in severe and very severe patients with 2019 novel coronavirus disease. J Infect. 2020. [epub, accessed: May 25, 2020]
Li H, Liu L, Zhang D, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. The Lancet 2020; 395(10235): 1517–1520.
Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020. [epub, accessed: May 25, 2020]
Moore J, June C. Cytokine release syndrome in severe COVID-19. Science 2020.
Tian S, Xiong Y, Liu H, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol. 2020. [epub, accessed: May 25, 2020]
Barton LM, Duval EJ, Stroberg E, et al. COVID-19 autopsies, Oklahoma, USA. Am J Clin Pathol. 2020; 153(6): 725–733.
Menter T, Haslbauer JD, Nienhold R, et al. Post-mortem examination of COVID19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings of lungs and other organs suggesting vascular dysfunction. Histopathology 2020. [epub, accessed: May 25, 2020]
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. The Lancet 2020; 395(10234): 1417–1418.
Fox SE, Akmatbekov A, Harbert JL, et al. Pulmonary and cardiac pathology in Covid-19: The first autopsy series from New Orleans. medRxiv 2020. [epub, accessed: May 25, 2020]
Xiao AT, Tong YX, Zhang S. Profile of RT-PCR for SARS-CoV-2: a preliminary study from 56 COVID-19 patients. Clin Infect Dis. 2020. [epub, accessed: May 25, 2020]
Fang Z, Zhang Y, Hang C, et al. Comparisons of viral shedding time of SARS-CoV-2 of different samples in ICU and non-ICU patients. J Infect. 2020. [epub, accessed: May 25, 2020]
Zhou B, She J, Wang Y, et al. The duration of viral shedding of discharged patients with severe COVID-19. Clin Infect Dis. 2020. [epub, accessed: May 25, 2020]
Jiang M, Li Y, Han M, et al. Recurrent PCR positivity after hospital discharge of people with coronavirus disease 2019 (COVID-19). J Infect. 2020. [epub, accessed: May 25, 2020]
Lin A, He Z, Zhang S, et al. Early risk factors for the duration of SARS-CoV-2 viral positivity in COVID-19 patients. Clin Infect Dis. 2020. [epub, accessed: May 25, 2020]
Du X, Yu X, Li Q, et al. Duration for carrying SARS-CoV-2 in COVID-19 patients. J Infect. 2020. [epub, accessed: May 25, 2020]
Zhou X, Li Y, Li T, et al. Follow-up of asymptomatic patients with SARS-CoV-2 infection. Clin Microbiol Infect. 2020. [epub, accessed: May 25, 2020]
Yetmar ZA, Issa M, Munawar S, et al. Inpatient care of patients with COVID-19: A guide for hospitalists. Am J Med. 2020. [epub, accessed: May 25, 2020]
Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant. 2020; 39(5): 405–407.
Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382(18): 1708–1720.
Wu Z, McGoogan J. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. JAMA 2020. [epub, accessed: May 25, 2020]
Korsos A, Kupcsulik S, Lovas A, et al. Diagnostic consideration and bedside estimation of the prognosis in COVID-19 patients. [Diagnosztikus lépések és a betegség prognózisának becslése COVID–19-fertőzött betegeken] Orv Hetil. 2020; 161(17): 667–671. [epub, accessed: May 25, 2020] [Hungarian]
Auld S, Caridi-Scheible M, Blum JM, et al. ICU and ventilator mortality among critically ill adults with COVID-19. medRxiv 2020. [epub, accessed: May 25, 2020]
Kim D, Quinn J, Pinsky B, et al. Rates of co-infection between SARS-CoV-2 and other respiratory pathogens. JAMA. 2020. [epub, accessed: May 25, 2020]
Rawson TM, Moore LSP, Zhu N, et al. Bacterial and fungal co-infection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis. 2020. [epub, accessed: May 25, 2020]
Sepulveda J, Westblade LF, Whittier S, et al. Bacteremia and blood culture utilization during COVID-19 surge in New York City. J Clin Microbiol. 2020. [epub, accessed: May 25, 2020]
Clancy CJ, Nguyen MH. COVID-19, superinfections and antimicrobial development: What can we expect? Clin Infect Dis. 2020. [epub, accessed: May 25, 2020]
Huttner BD, Catho G, Pano-Pardo JR, et al. COVID-19: don’t neglect antimicrobial stewardship principles! Clin Microbiol Infect. 2020. [epub, accessed: May 25, 2020]
Koehler P, Cornely OA, Bottiger BW, et al. COVID-19 associated pulmonary aspergillosis. Mycoses. 2020. [epub, accessed: May 25, 2020]
van Arkel A, Rijpstra T, Belderbos H, et al. COVID-19 Associated Pulmonary Aspergillosis. Am J Resp Crit Care Med. 2020. [epub, accessed: May 25, 2020]
Antinori S, Bonazzetti C, Gubertini G, et al. Tocilizumab for cytokine storm syndrome in COVID-19 pneumonia: an increased risk for candidemia? Autoimmun Rev. 2020. [epub, accessed: May 25, 2020]
Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. N Engl J Med. 2020. [epub, accessed: May 25, 2020]
Gandhi RT, Lynch JB, Del Rio C. Mild or Moderate Covid-19. N Engl J Med. 2020. [epub, accessed: May 25, 2020]
Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020; 18(5): 1094–1099.
Levi M, Thachil J, Iba T, et al. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020. [epub, accessed: May 25, 2020]
Klok FA, Kruip M, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020. [epub, accessed: May 25, 2020]
Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol. 2020. [epub, accessed: May 25, 2020]
von Lilienfeld-Toal M, Vehreschild JJ, Cornely O, et al. Frequently asked questions regarding SARS-CoV-2 in cancer patients-recommendations for clinicians caring for patients with malignant diseases. Leukemia 2020. [epub, accessed: May 25, 2020]
He W, Chen L, Chen L, et al. COVID-19 in persons with haematological cancers. Leukemia 2020. [epub, accessed: May 25, 2020]
Baumann T, Delgado J, Montserrat E. CLL and COVID-19 at the Hospital Clinic of Barcelona: an interim report. Leukemia 2020. [epub, accessed: May 25, 2020]
Li W, Wang D, Guo J, et al. COVID-19 in persons with chronic myeloid leukaemia. Leukemia 2020. [epub, accessed: May 25, 2020]
Cook G, Ashcroft AJ, Pratt G, et al. Real-world assessment of the clinical impact of symptomatic infection with severe acute respiratory syndrome coronavirus (COVID-19 disease) in patients with Multiple Myeloma receiving systemic anti-cancer therapy. Br J Haematol. 2020. [epub, accessed: May 25, 2020]
Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020; 55(5): 1–13.
Minotti C, Tirelli F, Barbieri E, et al. How is immunosuppressive status affecting children and adults in SARS-CoV-2 infection? A systematic review. J Infect. 2020. [epub, accessed: May 25, 2020]
Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020. [epub, accessed: May 25, 2020]
Pereira MR, Mohan S, Cohen DJ, et al. COVID-19 in solid organ transplant recipients: Initial report from the US epicenter. Am J Transplant. 2020. [epub, accessed: May 25, 2020]