View More View Less
  • 1 1 Országos Hematológiai és Infektológiai Intézet, Dél-pesti Centrumkórház, , 1097 Budapest, Albert Flórián út 5–7.
  • | 2 2 Klinikai Tudományok Doktori Iskola, Semmelweis Egyetem, , Budapest
  • | 3 3Nemzeti Népegészségügyi Központ, , Budapest
Open access

Absztrakt:

A COVID–19 a SARS-CoV-2 vírus által okozott, járványosan terjedő, légúti kiindulású betegség. A kórokozó magas patogenitású, zoonotikus eredetű humán coronavírus, mely hatékonyan terjed emberről emberre cseppfertőzéssel és közeli kontaktussal. A medián lappangási idő 5 nap, a maximum 14 nap. A COVID–19 kardinális tünetei a láz, dyspnoe és száraz köhögés. Az esetek 80%-a enyhe lefolyású, 5%-ban azonban intenzív terápiás ellátás és gépi lélegeztetés válik szükségessé. A COVID–19 akár súlyos, az egész szervezetre kiterjedő citokinvihart is kiválthat, mely gyors beavatkozás nélkül végzetes kimenetelű lehet. Jelen összefoglaló – melyet a diagnosztikai és terápiás szempontokat tárgyaló társközlemény követ – a betegséggel kapcsolatban 2020. május 25-ig elérhető legfőbb nemzetközi és hazai irodalmi eredményeket ismerteti; elsősorban, de nem kizárólag hematológus kollégák számára.

  • 1

    Szabó B. In the middle of a new pandemic – what we know about COVID–19. [Egy új világjárvány közepén – amit eddig a COVID–19-ről tudni vélünk.] Orvostovábbképző Szemle 2020. [Hungarian]

  • 2

    Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270–273.

  • 3

    Tang X, Wu C, Li X, et al. On the origin and continuing evolution of SARS-CoV-2. Nat Sci Rev. 2020. [epub, accessed: May 25, 2020]

  • 4

    Ceraolo C, Giorgi FM. Genomic variance of the 2019-nCoV coronavirus. J Med Virol. 2020; 92(5): 522–528.

  • 5

    WHO. Novel Coronavirus (2019-nCoV) Situation Report – 12. 2020.

  • 6

    WHO. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020.

  • 7

    Kemenesi G, Zeghbib S, Somogyi BA, et al. Multiple SARS-CoV-2 introductions shaped the early outbreak in Central Eastern Europe: comparing Hungarian data to a worldwide sequence data-matrix. medRxiv 2020. [epub, accessed: May 25, 2020]

  • 8

    Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020; 26(4): 450–452.

  • 9

    Shi J, Wen Z, Zhong G, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science 2020. [epub, accessed: May 25, 2020]

  • 10

    Cevik M, Bamford CGG, Ho A. COVID-19 pandemic-a focused review for clinicians. Clin Microbiol Infect. 2020. [epub, accessed: May 25, 2020]

  • 11

    CDC. How COVID-19 Spreads. Available from: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html [accessed: May 25, 2020]

  • 12

    van Doremalen N, Bushmaker T, Morris D, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. NEJM 2020. [epub, accessed: May 25, 2020]

  • 13

    Hui KPY, Cheung M-C, Perera RAPM, et al. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures. Lancet Resp Med. 2020. [epub, accessed: May 25, 2020]

  • 14

    Groß R, Conzelmann C, Müller JA, et al. Detection of SARS-CoV-2 in human breastmilk. Lancet 2020. [epub, accessed: May 25, 2020]

  • 15

    Meselson M. Droplets and aerosols in the transmission of SARS-CoV-2. NEJM 2020. [epub, accessed: May 25, 2020]

  • 16

    Anfinrud P, Stadnytskyi V, Bax C, Bax A. Visualizing speech-generated oral fluid droplets with laser light scattering. NEJM 2020. [epub, accessed: May 25, 2020]

  • 17

    NEJM JWatch. SARS-CoV-2 may be transmissible by normal breathing. Available from: https://www.jwatch.org/fw116519/2020/04/05/sars-cov-2-may-be-transmissible-normal-breathing-cloth [accessed: May 25, 2020]

  • 18

    He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020; 26(5): 672–675.

  • 19

    Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2). Science 2020. [epub, accessed: May 25, 2020]

  • 20

    CDC. Asymptomatic and Presymptomatic SARS-CoV-2 Infections in Residents of a Long-Term Care Skilled Nursing Facility — King County, Washington, March 2020. MMRW 2020; 69(13): 377–381.

  • 21

    CDC. Presymptomatic Transmission of SARS-CoV-2 — Singapore, January 23–March 16, 2020. MMRW 2020; 69(14): 411–415.

  • 22

    Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro Surveill. 2020; 25(4): 1–10.

  • 23

    Reuters. How coronavirus cases exploded in South Korean churches and hospitals. Available from: https://graphics.reuters.com/CHINA-HEALTH-SOUTHKOREA-CLUSTERS/0100B5G33SB/index.html [accessed: May 25, 2020]

  • 24

    Zhou G, Chen S, Chen Z. Advances in COVID-19: the virus, the pathogenesis, and evidence-based control and therapeutic strategies. Front Med. 2020; 14(2): 117–125.

  • 25

    Pampel J. SARS-CoV-2 Life Cycle: Stages and Inhibition Targets. Available from: https://www.antibodies-online.com/resources/18/5410/sars-cov-2-life-cycle-stages-and-inhibition-targets/ [accessed: May 25, 2020]

  • 26

    Vabret N, Britton GJ, Gruber C, et al. Immunology of COVID-19: current state of the science. Immunity 2020.

  • 27

    Matricardi PM, Dal Negro RW, Nisini R. The first, holistic immunological model of COVID-19: implications for prevention, diagnosis, and public health measures. Pediatr Allergy Immunol. 2020. [epub, accessed: May 25, 2020]

  • 28

    Wang X, Xu W, Hu G, et al. SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. Cell Mol Immunol. 2020. [epub, accessed: May 25, 2020]

  • 29

    Xu X, Gao X. Immunological responses against SARS-coronavirus infection in humans. Cell Mol Immunol. 2004; (2): 119–122.

  • 30

    Liu Z, Long W, Tu M, et al. Lymphocyte subset (CD4+, CD8+) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19. J Infect. 2020. [epub, accessed: May 25, 2020]

  • 31

    Xiao AT, Gao C, Zhang S. Profile of specific antibodies to SARS-CoV-2: The first report. J Infect. 2020. [epub, accessed: May 25, 2020]

  • 32

    Wan S, Yi Q, Fan S, et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Br J Haematol. 2020; 189(3): 428–437.

  • 33

    Szekanecz Z, Rákóczi É, Bálint P, et al. Immunological and rheumatologic aspects of COVID-19. [A COVID–19 immunológiai és reumatológiai vonatkozásai.] Immunol Szemle 2020. [epub, accessed: May 25, 2020] [Hungarian]

  • 34

    Lindsley AW, Schwartz JT, Rothenberg ME. Eosinophil responses during COVID-19 infections and coronavirus vaccination. J Allergy Clin Immunol. 2020. [epub, accessed: May 25, 2020]

  • 35

    Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020. [epub, accessed: May 25, 2020]

  • 36

    Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020. [epub, accessed: May 25, 2020]

  • 37

    To KK-W, Tsang OT-Y, Leung W-S, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Inf Dis. 2020; 20(5): 565–574.

  • 38

    Bao L, Deng W, Gao H, et al. Lack of reinfection in Rhesus macaques infected with SARS-CoV-2. bioRxiv 2020. [epub, accessed: May 25, 2020]

  • 39

    Korber B, Fischer WM, Gnanakaran S, et al. Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv 2020. [epub, accessed: May 25, 2020]

  • 40

    Bennett CE, Anavekar NS, Gulati R, et al. ST-segment elevation, myocardial injury, and suspected or confirmed COVID-19 patients: Diagnostic and treatment uncertainties. Mayo Clin Proc. 2020. [epub, accessed: May 25, 2020]

  • 41

    Escher R, Breakey N, Lammle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020; 190: 62.

  • 42

    Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020. [epub, accessed: May 25, 2020]

  • 43

    Zhou B, She J, Wang Y, et al. The clinical characteristics of myocardial injury in severe and very severe patients with 2019 novel coronavirus disease. J Infect. 2020. [epub, accessed: May 25, 2020]

  • 44

    Li H, Liu L, Zhang D, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. The Lancet 2020; 395(10235): 1517–1520.

  • 45

    Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020. [epub, accessed: May 25, 2020]

  • 46

    Moore J, June C. Cytokine release syndrome in severe COVID-19. Science 2020.

  • 47

    Tian S, Xiong Y, Liu H, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol. 2020. [epub, accessed: May 25, 2020]

  • 48

    Barton LM, Duval EJ, Stroberg E, et al. COVID-19 autopsies, Oklahoma, USA. Am J Clin Pathol. 2020; 153(6): 725–733.

  • 49

    Menter T, Haslbauer JD, Nienhold R, et al. Post-mortem examination of COVID19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings of lungs and other organs suggesting vascular dysfunction. Histopathology 2020. [epub, accessed: May 25, 2020]

  • 50

    Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. The Lancet 2020; 395(10234): 1417–1418.

  • 51

    Fox SE, Akmatbekov A, Harbert JL, et al. Pulmonary and cardiac pathology in Covid-19: The first autopsy series from New Orleans. medRxiv 2020. [epub, accessed: May 25, 2020]

  • 52

    Xiao AT, Tong YX, Zhang S. Profile of RT-PCR for SARS-CoV-2: a preliminary study from 56 COVID-19 patients. Clin Infect Dis. 2020. [epub, accessed: May 25, 2020]

  • 53

    Fang Z, Zhang Y, Hang C, et al. Comparisons of viral shedding time of SARS-CoV-2 of different samples in ICU and non-ICU patients. J Infect. 2020. [epub, accessed: May 25, 2020]

  • 54

    Zhou B, She J, Wang Y, et al. The duration of viral shedding of discharged patients with severe COVID-19. Clin Infect Dis. 2020. [epub, accessed: May 25, 2020]

  • 55

    Jiang M, Li Y, Han M, et al. Recurrent PCR positivity after hospital discharge of people with coronavirus disease 2019 (COVID-19). J Infect. 2020. [epub, accessed: May 25, 2020]

  • 56

    Lin A, He Z, Zhang S, et al. Early risk factors for the duration of SARS-CoV-2 viral positivity in COVID-19 patients. Clin Infect Dis. 2020. [epub, accessed: May 25, 2020]

  • 57

    Du X, Yu X, Li Q, et al. Duration for carrying SARS-CoV-2 in COVID-19 patients. J Infect. 2020. [epub, accessed: May 25, 2020]

  • 58

    Zhou X, Li Y, Li T, et al. Follow-up of asymptomatic patients with SARS-CoV-2 infection. Clin Microbiol Infect. 2020. [epub, accessed: May 25, 2020]

  • 59

    Yetmar ZA, Issa M, Munawar S, et al. Inpatient care of patients with COVID-19: A guide for hospitalists. Am J Med. 2020. [epub, accessed: May 25, 2020]

  • 60

    Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant. 2020; 39(5): 405–407.

  • 61

    Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382(18): 1708–1720.

  • 62

    Wu Z, McGoogan J. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. JAMA 2020. [epub, accessed: May 25, 2020]

  • 63

    Korsos A, Kupcsulik S, Lovas A, et al. Diagnostic consideration and bedside estimation of the prognosis in COVID-19 patients. [Diagnosztikus lépések és a betegség prognózisának becslése COVID–19-fertőzött betegeken] Orv Hetil. 2020; 161(17): 667–671. [epub, accessed: May 25, 2020] [Hungarian]

  • 64

    Auld S, Caridi-Scheible M, Blum JM, et al. ICU and ventilator mortality among critically ill adults with COVID-19. medRxiv 2020. [epub, accessed: May 25, 2020]

  • 65

    Kim D, Quinn J, Pinsky B, et al. Rates of co-infection between SARS-CoV-2 and other respiratory pathogens. JAMA. 2020. [epub, accessed: May 25, 2020]

  • 66

    Rawson TM, Moore LSP, Zhu N, et al. Bacterial and fungal co-infection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis. 2020. [epub, accessed: May 25, 2020]

  • 67

    Sepulveda J, Westblade LF, Whittier S, et al. Bacteremia and blood culture utilization during COVID-19 surge in New York City. J Clin Microbiol. 2020. [epub, accessed: May 25, 2020]

  • 68

    Clancy CJ, Nguyen MH. COVID-19, superinfections and antimicrobial development: What can we expect? Clin Infect Dis. 2020. [epub, accessed: May 25, 2020]

  • 69

    Huttner BD, Catho G, Pano-Pardo JR, et al. COVID-19: don’t neglect antimicrobial stewardship principles! Clin Microbiol Infect. 2020. [epub, accessed: May 25, 2020]

  • 70

    Koehler P, Cornely OA, Bottiger BW, et al. COVID-19 associated pulmonary aspergillosis. Mycoses. 2020. [epub, accessed: May 25, 2020]

  • 71

    van Arkel A, Rijpstra T, Belderbos H, et al. COVID-19 Associated Pulmonary Aspergillosis. Am J Resp Crit Care Med. 2020. [epub, accessed: May 25, 2020]

  • 72

    Antinori S, Bonazzetti C, Gubertini G, et al. Tocilizumab for cytokine storm syndrome in COVID-19 pneumonia: an increased risk for candidemia? Autoimmun Rev. 2020. [epub, accessed: May 25, 2020]

  • 73

    Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. N Engl J Med. 2020. [epub, accessed: May 25, 2020]

  • 74

    Gandhi RT, Lynch JB, Del Rio C. Mild or Moderate Covid-19. N Engl J Med. 2020. [epub, accessed: May 25, 2020]

  • 75

    Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020; 18(5): 1094–1099.

  • 76

    Levi M, Thachil J, Iba T, et al. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020. [epub, accessed: May 25, 2020]

  • 77

    Klok FA, Kruip M, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020. [epub, accessed: May 25, 2020]

  • 78

    Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol. 2020. [epub, accessed: May 25, 2020]

  • 79

    von Lilienfeld-Toal M, Vehreschild JJ, Cornely O, et al. Frequently asked questions regarding SARS-CoV-2 in cancer patients-recommendations for clinicians caring for patients with malignant diseases. Leukemia 2020. [epub, accessed: May 25, 2020]

  • 80

    He W, Chen L, Chen L, et al. COVID-19 in persons with haematological cancers. Leukemia 2020. [epub, accessed: May 25, 2020]

  • 81

    Baumann T, Delgado J, Montserrat E. CLL and COVID-19 at the Hospital Clinic of Barcelona: an interim report. Leukemia 2020. [epub, accessed: May 25, 2020]

  • 82

    Li W, Wang D, Guo J, et al. COVID-19 in persons with chronic myeloid leukaemia. Leukemia 2020. [epub, accessed: May 25, 2020]

  • 83

    Cook G, Ashcroft AJ, Pratt G, et al. Real-world assessment of the clinical impact of symptomatic infection with severe acute respiratory syndrome coronavirus (COVID-19 disease) in patients with Multiple Myeloma receiving systemic anti-cancer therapy. Br J Haematol. 2020. [epub, accessed: May 25, 2020]

  • 84

    Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020; 55(5): 1–13.

  • 85

    Minotti C, Tirelli F, Barbieri E, et al. How is immunosuppressive status affecting children and adults in SARS-CoV-2 infection? A systematic review. J Infect. 2020. [epub, accessed: May 25, 2020]

  • 86

    Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020. [epub, accessed: May 25, 2020]

  • 87

    Pereira MR, Mohan S, Cohen DJ, et al. COVID-19 in solid organ transplant recipients: Initial report from the US epicenter. Am J Transplant. 2020. [epub, accessed: May 25, 2020]

 

The author instruction is available in PDF.
Please, download the file from HERE.
 

 

  • Árpád ILLÉS (Debreceni Egyetem, főszerkesztő)
  • Csaba BÖDÖR (Semmelweis Egyetem, főszerkesztő-helyettes)
  • Judit DEMETER (Semmelweis Egyetem, főszerkesztő-helyettes)
  • Lajos GERGELY (Debreceni Egyetem, főszerkesztő-helyettes)
  • Imelda MARTON (Szegedi Tudományegyetem, főszerkesztő-helyettes)
  • Gábor MIKALA (Dél-Pesti Centrumkórház, Országos Hematológiai és Infektológiai Intézet, főszerkesztő-helyettes)
  • Dezső LEHOCZKY (Semmelweis Egyetem, emeritus főszerkesztő)
  • Sándor FEKETE (Dél-Pesti Centrumkórház, Országos Hematológiai és Infektológiai Intézet, emeritus főszerkesztő)
  • Hajnalka ANDRIKOVICS (Dél-Pesti Centrumkórház, Országos Hematológiai és Infektológiai Intézet, szerkesztő)
  • Zita BORBÉNYI (Szegedi Tudományegyetem, szerkesztő)
  • Miklós EGYED (Somogy Megyei Kaposi Mór Oktató Kórház, szerkesztő)
  • Alizadeh HUSSAIN (Pécsi Tudományegyetem, szerkesztő)
  • Judit JAKAB (Országos Vérellátó Szolgálat, szerkesztő)
  • Béla KAJTÁR (Pécsi Tudományegyetem, szerkesztő)
  • Tamás MASSZI (Semmelweis Egyetem, szerkesztő)
  • Zsolt György NAGY (Semmelweis Egyetem, szerkesztő)
  • György PFLIEGLER (Debreceni Egyetem, szerkesztő)
  • Péter REMÉNYI (Dél-Pesti Centrumkórház, Országos Hematológiai és Infektológiai Intézet, szerkesztő)
  • Marienn RÉTI (Dél-Pesti Centrumkórház, Országos Hematológiai és Infektológiai Intézet, szerkesztő)
  • Tamás SCHNEIDER (Országos Onkológiai Intézet, szerkesztő)
  • László SZERAFIN (Szabolcs-Szatmár-Bereg Megyei Jósa András Oktatókórház, Nyíregyháza, szerkesztő)
  • Attila TORDAI (Semmelweis Egyetem, szerkesztő)

Hematológia-Transzfuziológia Szerkesztőség
Dr. Illés Árpád
Debreceni Egyetem Klinikai Központ
Belgyógyászati Intézet B épület
4012 Debrecen, Nagyerdei krt. 98. Pf.: 20.
E-mail: illesarpaddr@gmail.com

2020  
CrossRef Documents 16
CrossRef Cites 0
CrossRef H-index 1
Days from submission to acceptance 27
Days from acceptance to publication 28
Acceptance Rate 100%

2019  
CrossRef
Documents
27
Acceptance
Rate
98%

 

Hematológia-Transzfuziológia
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subscription: 80 EUR / 100 USD
Subscription fee 2022 Online subscription: 82 EUR / 102 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Hematológia-Transzfuziológia
Language Hungarian
Size A4
Year of
Foundation
2004
Publication
Programme
2021 Volume 54
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Hematológiai és Transzfuziológiai Társaság
Founder's
Address
Szent László Kórház, Hematológiai Osztály H-1097 Budapest, Hungary Gyáli út 5-7.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1786-5913 (Print)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 13 203
Jul 2021 0 15 157
Aug 2021 0 14 160
Sep 2021 0 19 303
Oct 2021 0 9 545
Nov 2021 0 43 1118
Dec 2021 0 0 0