View More View Less
  • 1 Dél-pesti Centrumkórház, 1097 Budapest, Albert Flórián út 5–7.
  • 2 Semmelweis Egyetem, Budapest
  • 3 Nemzeti Népegészségügyi Központ, Budapest
Open access

Absztrakt:

A COVID–19 a SARS-CoV-2 vírus által okozott, járványosan terjedő, légúti kiindulású betegség. A kórokozó magas patogenitású, zoonotikus eredetű humán coronavírus, mely hatékonyan terjed emberről emberre cseppfertőzéssel és közeli kontaktussal. A vírusdiagnosztika a légutakból vett minta PCR-vizsgálatán alapul, melynek ismétlésére szükség lehet a fertőzés kizárására. A PCR-eredményt a klinikummal egybe kell vetni, mivel a preszimptomatikus beteg már vírust üríthet, a gyógyultak PCR-pozitivitása pedig hetekig elhúzódik. A terápiás stratégiák két ágát az antivirális gyógyszerek, valamint a hiperinflammációt gátló immunmodulánsok adják. Jelen összefoglalásunk a második azon két társközlemény közül, melyek célja a 2020. május 25-ig elérhető legfőbb nemzetközi és hazai betegséggel kapcsolatos eredmények ismertetése, elsősorban, de nem kizárólag hematológus kollégák számára.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Szabó B. In the middle of a new pandemic – what we know about COVID-19. [Egy új világjárvány közepén – amit eddig a COVID–19-ről tudni vélünk.] Orvostovábbképző Szemle. 2020. [Hungarian]

  • 2

    Sethuraman N, Jeremiah S, Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA. 2020. [epub, accessed: May 25, 2020]

  • 3

    Kucirka L, Lauer S, Laeyendecker O, et al. Variation in false-negative rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure. Ann Int Med. 2020. [epub, accessed: May 25, 2020]

  • 4

    Vasarhelyi B, Kristof K, Ostorhazi E, et al. The diagnostic value of rapid anti IgM and IgG detecting tests in the identification of patients with SARS CoV-2 virus infection. [A specifikus IgM- és IgG-antitesteket detektáló gyorstesztek értéke a SARS CoV-2 vírusfertőzés kimutatásában.] Orv Hetil. 2020; 161(20): 807–812. [Hungarian]

  • 5

    Yun H, Sun Z, Wu J, et al. Laboratory data analysis of novel coronavirus (COVID-19) screening in 2510 patients. Clin Chim Acta. 2020; 507: 94–97. [epub, accessed: May 25, 2020]

  • 6

    Frater JL, Zini G, d’Onofrio G, et al. COVID-19 and the clinical hematology laboratory. Int J Lab Hematol. 2020. [epub, accessed: May 25, 2020]

  • 7

    Thachil J, Tang N, Gando S, et al. Laboratory haemostasis monitoring in COVID-19. J Thromb Haemost. 2020. [epub, accessed: May 25, 2020]

  • 8

    Gao L, Jiang D, Wen XS, et al. Prognostic value of NT-proBNP in patients with severe COVID-19. Respir Res. 2020; 21(1): 83–90.

  • 9

    Kooraki S, Hosseiny M, Myers L, et al. Coronavirus (COVID-19) Outbreak: What the Department of Radiology Should Know. J Am Coll Radiol. 2020; 17(4): 447–451.

  • 10

    Gandhi RT, Lynch JB, Del Rio C. Mild or Moderate Covid-19. N Engl J Med. 2020. [epub, accessed: May 25, 2020]

  • 11

    Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. N Engl J Med. 2020. [epub, accessed: May 25, 2020]

  • 12

    Bassetti M, Giacobbe DR, Aliberti S, et al. Balancing evidence and frontline experience in the early phases of the COVID-19 pandemic: current position of the Italian Society of Anti-infective Therapy (SITA) and the Italian Society of Pulmonology (SIP). Clin Microbiol Infect. 2020. [epub, accessed: May 25, 2020]

  • 13

    Huttner BD, Catho G, Pano-Pardo JR, et al. COVID-19: don’t neglect antimicrobial stewardship principles! Clin Microbiol Infect. 2020. [epub, accessed: May 25, 2020]

  • 14

    Verweij PE, Gangneux J-P, Bassetti M, et al. Diagnosing COVID-19-associated pulmonary aspergillosis. The Lancet Microbe. 2020. [epub, accessed: May 25, 2020]

  • 15

    WHO. Report of the WHO – China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020.

  • 16

    Korsos A, Kupcsulik S, Lovas A, et al. Diagnostic consideration and bedside estimation of the prognosis in COVID-19 patients. [Diagnosztikus lépések és a betegség prognózisának becslése COVID–19-fertőzött betegeken ] Orv Hetil. 2020; 161(17): 667–671. [epub, accessed: May 25, 2020] [Hungarian]

  • 17

    Liang W, Liang H, Ou L, et al. Development and Validation of a Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients With COVID-19. JAMA Intern Med. 2020. [epub, accessed: May 25, 2020]

  • 18

    Auld S, Caridi-Scheible M, Blum JM, et al. ICU and ventilator mortality among critically ill adults with COVID-19. medRxiv. 2020. [epub, accessed: May 25, 2020]

  • 19

    Guo L, Wei D, Zhang X, et al. Clinical Features Predicting Mortality Risk in Patients With Viral Pneumonia: The MuLBSTA Score. Front Microbiol. 2019; 10: 2752.

  • 20

    Wynants L, Van Calster B, Bonten MMJ, et al. Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal. BMJ. 2020; 369: m1328.

  • 21

    Ji D, Zhang D, Xu J, et al. Prediction for Progression Risk in Patients with COVID-19 Pneumonia: the CALL Score. Clin Infect Dis. 2020. [epub, accessed: May 25, 2020]

  • 22

    Liu X, Zhou H, Zhou Y, et al. Risk factors associated with disease severity and length of hospital stay in COVID-19 patients. J Infect. 2020. [epub, accessed: May 25, 2020]

  • 23

    Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J Infect. 2020. [epub, accessed: May 25, 2020]

  • 24

    NIH. COVID-19 Treatment Guidelines. Available from: https://www.covid19treatmentguidelines.nih.gov/ [accessed: May 25, 2020]

  • 25

    IDSA. COVID-19 Guidelines. Available from: https://www.idsociety.org/public-health/COVID-19-Resource-Center/ [accessed: May 25, 2020]

  • 26

    WHO. “Solidarity” clinical trial for COVID-19 treatments. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/solidarity-clinical-trial-for-covid-19-treatments [accessed: May 25, 2020]

  • 27

    67/2020. (III. 26.) Korm. rendelet az élet- és vagyonbiztonságot veszélyeztető tömeges megbetegedést okozó humánjárvány megelőzése, illetve következményeinek elhárítása, a magyar állampolgárok egészségének és életének megóvása érdekében elrendelt veszélyhelyzet során történő gyógyszerellátással kapcsolatos intézkedésekről. Available from: https://net.jogtar.hu/jogszabaly?docid=a2000067.kor [accessed: May 25, 2020]

  • 28

    Vijayvargiya P, Garrigos Z, Castillo Almeida N, et al. Treatment Considerations for COVID-19: A Critical Review of the Evidence (or Lack Thereof). Mayo Clin Proc. 2020. [epub, accessed: May 25, 2020]

  • 29

    Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020; 6: 16.

  • 30

    Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020; 14(1): 72–73.

  • 31

    Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020. [epub, accessed: May 25, 2020]

  • 32

    Sanders JM, Monogue ML, Jodlowski TZ, et al. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA. 2020. [epub, accessed: May 25, 2020]

  • 33

    Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ. 2020; 369: m1849.

  • 34

    Geleris J, Sun Y, Platt J, et al. Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl J Med. 2020. [epub, accessed: May 25, 2020]

  • 35

    Rosenberg ES, Dufort EM, Udo T, et al. Association of Treatment With Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With COVID-19 in New York State. JAMA. 2020. [epub, accessed: May 25, 2020]

  • 36

    Mehra MR, Desai SS, Ruschitzka F et al. Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet. 2020. [epub, accessed: May 25, 2020]

  • 37

    Savarino A, Tarek M. Pharmacokinetic bases of the hydroxychloroquine response in COVID-19: implications for therapy and prevention. medRxiv. 2020. [epub, accessed: May 25, 2020]

  • 38

    Wu J, Li W, Shi X, et al. Early antiviral treatment contributes to alleviate the severity and improve the prognosis of patients with novel coronavirus disease (COVID-19). J Intern Med. 2020. [epub, accessed: May 25, 2020]

  • 39

    Hung IF-N, Lung K-C, Tso EY-K, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020. [epub, accessed: May 25, 2020]

  • 40

    Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020; 382(19): 1787–1799.

  • 41

    Schoergenhofer C, Jilma B, Stimpfl T, et al. Pharmacokinetics of Lopinavir and Ritonavir in Patients Hospitalized With Coronavirus Disease 2019 (COVID-19). Ann Intern Med. 2020. [epub, accessed: May 25, 2020]

  • 42

    Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020; 395(10236): 1569–1578.

  • 43

    Li L, Li R, Wu Z, et al. Therapeutic strategies for critically ill patients with COVID-19. Ann Intensive Care. 2020; 10(1): 45.

  • 44

    Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020; 181(2): 271–280 e278.

  • 45

    Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19 – Preliminary Report. N Engl J Med. 2020. [epub, accessed: May 25, 2020]

  • 46

    Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J Infect. 2020; 80(6): 607–613.

  • 47

    Lakatos B, Gopcsa L, Gondos E, et al. Anti-cytokine therapy in novel coronavirus disease (COVID-19) – the first administration of tocilizumab in Hungary at a department of infectology. [Citokinellenes terápia az új típusú koronavírus okozta megbetegedés (COVID–19) kezelésében – tocilizumab elsőként való alkalmazása egy hazai infektológiai osztályon]. Orv Hetil. 2020. [in press, Hungarian]

  • 48

    Cantini F, Niccoli L, Matarrese D, et al. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect. 2020. [epub, accessed: May 25, 2020]

  • 49

    Treon S, Castillo J, Skarbnik A, et al. The BTK-inhibitor ibrutinib may protect against pulmonary injury in COVID-19 infected patients. Blood. 2020. [epub, accessed: May 25, 2020]

  • 50

    Thibaud S, Tremblay D, Bhalla S, et al. Protective Role of BTK Inhibitors in Patients with Chronic Lymphocytic Leukemia and COVID-19. Br J Haematol. 2020. [epub, accessed: May 25, 2020]

  • 51

    Xie Y, Cao S, Dong H, et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect. 2020. [epub, accessed: May 25, 2020]

  • 52

    Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A. 2020; 117(17): 9490–9496.

  • 53

    Rajendran K, Krishnasamy N, Rangarajan J, et al. Convalescent plasma transfusion for the treatment of COVID-19: Systematic review. J Med Virol. 2020. [epub, accessed: May 25, 2020]

  • 54

    HVG. Öt nap után lekerült a lélegeztetőgépről az első plazmaterápiával kezelt beteg. Available from: https://hvg.hu/itthon/20200509_valyinagy_istvan_interju_delpesticentrumkorhaz_foigazgato_verplazmaterapia_innovativ_terapia_koronavirus. [accessed: May 25, 2020]

  • 55

    Lekerült a lélegeztetőgépről egy COVID-19 beteg a vérplazmaterápia után a Semmelweis Egyetemen. Available from: https://semmelweis.hu/hirek/2020/05/13/lekerult-a-lelegeztetogeprol-a-covid-19-beteg-a-verplazmaterapianak-koszonhetoen-a-semmelweis-egyetemen/. [accessed: May 25, 2020]

  • 56

    Zhao RC. Stem cell-based therapy for coronavirus disease 2019. Stem Cells Dev. 2020. [epub, accessed: May 25, 2020]

  • 57

    Zumla A, Wang FS, Ippolito G, et al. Reducing mortality and morbidity in patients with severe COVID-19 disease by advancing ongoing trials of Mesenchymal Stromal (stem) Cell (MSC) therapy – achieving global consensus and visibility for cellular host-directed therapies. Int J Infect Dis. 2020. [epub, accessed: May 25, 2020]

  • 58

    Bari E, Ferrarotti I, Saracino L, et al. Mesenchymal Stromal Cell Secretome for Severe COVID-19 Infections: Premises for the Therapeutic Use. Cells. 2020; 9(4): 1–24.

  • 59

    Rogers CJ, Harman RJ, Bunnell BA, et al. Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. J Transl Med. 2020; 18(1): 203.

  • 60

    Leung W, Soh TG, Linn YC, et al. Succesful manufacturing of clinical-grade SARS-CoV-2 specific T cells for adoptive cell therapy. medRxiv. 2020. [epub, accessed: May 25, 2020]

  • 61

    Cevik M, Bamford CGG, Ho A. COVID-19 pandemic – a focused review for clinicians. Clin Microbiol Infect. 2020. [epub, accessed: May 25, 2020]

  • 62

    Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020; 18(5): 1023–1026.

  • 63

    Casini A, Alberio L, Angelillo-Scherrer A, et al. Thromboprophylaxis and laboratory monitoring for in-hospital patients with COVID-19 – a Swiss consensus statement by the Working Party Hemostasis. Swiss Med Wkly. 2020; 150: w20247.

  • 64

    Zhai Z, Li C, Chen Y, et al. Prevention and Treatment of Venous Thromboembolism Associated with Coronavirus Disease 2019 Infection: A Consensus Statement before Guidelines. Thromb Haemost. 2020. [epub, accessed: May 25, 2020]

  • 65

    Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol. 2020. [epub, accessed: May 25, 2020]

  • 66

    Barnes G, Burnett A, Allen A, et al. Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: Interim clinical guidance from the anticoagulation forum. J Thromb Thrombolysis. 2020. [epub, accessed: May 25, 2020]

  • 67

    EMMI. Egészségügyi Szakmai Kollégium Hematológiai és Transzfuziológiai Tagozatának és munkacsoportjának ajánlása COVID– 19 eljárásrenddel kapcsolatban. 2020. [epub, accessed: May 25, 2020]

  • 68

    Willan J, King AJ, Hayes S, et al. Care of haematology patients in a COVID-19 epidemic. Br J Haematol. 2020; 189(2): 241–243.

  • 69

    Mussetti A, Maluquer C, Albasanz-Puig A, et al. Handling the COVID-19 pandemic in the oncological setting. Lancet Haematol. 2020; 7(5): e365–e366.

  • 70

    He Y, Lin Z, Tang D, et al. Strategic plan for management of COVID-19 in paediatric haematology and oncology departments. Lancet Haematol. 2020; 7(5): e359–e362.

  • 71

    Sainati L, Biffi A. How we deal with the COVID-19 epidemic in an Italian paediatric onco-haematology clinic located in a region with a high density of cases. Br J Haematol. 2020; 189(4): 640–642.

  • 72

    von Lilienfeld-Toal M, Vehreschild JJ, Cornely O, et al. Frequently asked questions regarding SARS-CoV-2 in cancer patients – recommendations for clinicians caring for patients with malignant diseases. Leukemia. 2020. [epub, accessed: May 25, 2020]

  • 73

    Al Saleh AS, Sher T, Gertz MA. Multiple Myeloma in the Time of COVID-19. Acta Haematol. 2020. [epub, accessed: May 25, 2020]

  • 74

    Raza A, Assal A, Ali AM, et al. Rewriting the rules for care of MDS and AML patients in the time of COVID-19. Leuk Res Rep. 2020. [epub, accessed: May 25, 2020]

  • 75

    Perini GF, Fischer T, Gaiolla RD, et al. How to manage lymphoid malignancies during novel 2019 coronavirus (CoVid-19) outbreak: a Brazilian task force recommendation. Hematol Transfus Cell Ther. 2020. [epub, accessed: May 25, 2020]

  • 76

    Ljungman P, Mikulska M, de la Camara R, et al. The challenge of COVID-19 and hematopoietic cell transplantation; EBMT recommendations for management of hematopoietic cell transplant recipients, their donors, and patients undergoing CAR T-cell therapy. Bone Marrow Transplant. 2020. [epub, accessed: May 25, 2020]

  • 77

    Paul S, Rausch CR, Jain N, et al. Treating Leukemia in the Time of COVID-19. Acta Haematol. 2020. [epub, accessed: May 25, 2020]

  • 78

    Weinkove R, McQuilten ZK, Adler J, et al. Managing haematology and oncology patients during the COVID-19 pandemic: interim consensus guidance. Med J Aust. 2020. [epub, accessed: May 25, 2020]

  • 79

    Gavillet M, Carr Klappert J, Spertini O, et al. Acute leukemia in the time of COVID-19. Leuk Res. 2020; 92: 106353.

  • 80

    Terpos E, Engelhardt M, Cook G, et al. Management of patients with multiple myeloma in the era of COVID-19 pandemic: a consensus paper from the European Myeloma Network (EMN). Leukemia. 2020. [epub, accessed: May 25, 2020]

  • 81

    EMMI. Egészségügyi Szakmai Kollégium Aneszteziológiai és Intenzív Terápiás Tagozatának és munkacsoportjának ajánlása COVID-19 eljárásrenddel kapcsolatban. 2020.

  • 82

    Treibel TA, Manisty C, Burton M, et al. COVID-19: PCR screening of asymptomatic health-care workers at London hospital. Lancet. 2020; 395: 1608–1610.

  • 83

    Black JRM, Bailey C, Przewrocka J, et al. COVID-19: the case for health-care worker screening to prevent hospital transmission. Lancet. 2020; 395: 1418–1420.

  • 84

    Bloch EM, Shoham S, Casadevall A, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest. 2020. [epub, accessed: May 25, 2020]