View More View Less
  • 1 I. sz. Patológiai és Kísérleti Rákkutató Intézet, MTA-SE Lendület Molekuláris Onkohematológiai Kutatócsoport, Semmelweis Egyetem, 1085 Budapest, Üllői út 26.
  • 2 Természettudományi Kar, Immunológiai Tanszék, Eötvös Lóránd Tudományegyetem, Budapest
  • 3 Általános Orvostudományi Kar, Belgyógyászati Intézet, Hematológiai Tanszék, Debreceni Egyetem, Debrecen
Open access

Absztrakt:

A molekuláris biológiai technikák utóbbi évtizedekben látott fejlődésének köszönhetően a vérplazmában keringő biomolekuláknak, így például a tumor eredetű sejtmentes DNS-fragmentumoknak is korábban elképzelhetetlen mélységű vizsgálata vált elérhetővé. A minimális invazivitással járó folyadékbiopsziás mintavétel metasztatikus tumorok esetében lehetővé teszi eltérő anatómiai lokalizációval megjelenő genetikai aberrációk egyidejű feltérképezését, azok nyomon követését, illetve a klonális evolúció következtében megjelenő további abnormalitások kimutatását is. Ebből következően számos, szolid tumorokat vizsgáló, folyadékbiopsziás mintavételt alkalmazó tanulmány jelent meg az utóbbi évtizedben, néhány entitás vonatkozásában pedig az eljárás már a rutindiagnosztikában is alkalmazásra került. Onkohematológiában az ebből a szempontból legintenzívebben kutatott megbetegedések közé a diffúz nagy B-sejtes limfóma, a Hodgkin-limfóma, illetve a plazmasejtes mielóma tartozik. Saját, illetve irodalmi adatok alapján a tumor eredetű sejtmentes DNS vizsgálata hasznos lehet a kezelést megelőző prognózisbecslésben, a célozható molekuláris eltérések azonosításában, a terápiás hatékonyság és a minimális reziduális betegség monitorozásában, valamint a terápiarezisztens klónok kimutatásában. Jelen összefoglaló közleményünkben a folyadékbiopszia-vizsgálatok onkohematológiai alkalmazásait tekintjük át.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Haber DA, Velculescu VE. Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov. 2014; 4: 650–661.

  • 2

    Siravegna G, Marsoni S, Siena S, et al. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017; 14: 531–548.

  • 3

    Fan HC, Blumenfeld YJ, Chitkara U, et al. Analysis of the size distributions of fetal and maternal cell-free DNA by paired-end sequencing. Clin Chem. 2010; 56: 1279–1286.

  • 4

    Alix-Panabieres C, Pantel K. The circulating tumor cells: liquid biopsy of cancer. Klin Lab Diagn. 2014: 60–64.

  • 5

    Corcoran RB, Chabner BA. Application of cell-free DNA analysis to cancer treatment. N Engl J Med. 2018; 379: 1754–1765.

  • 6

    Heitzer E, Haque IS, Roberts CES, et al. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019; 20: 71–88.

  • 7

    Gremel G, Lee RJ, Girotti MR, et al. Distinct subclonal tumour responses to therapy revealed by circulating cell-free DNA. Ann Oncol. 2016; 27: 1959–1965.

  • 8

    Russo M, Siravegna G, Blaszkowsky LS, et al. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discov. 2016; 6: 147–153.

  • 9

    Camus V, Jardin F. Cell-free DNA and the monitoring of lymphoma treatment. Pharmacogenomics 2019; 20: 1271–1282.

  • 10

    Darrah JM, Herrera AF. Updates on circulating tumor DNA assessment in lymphoma. Curr Hematol Malig Rep. 2018; 13: 348–355.

  • 11

    Merker JD, Oxnard GR, Compton C, et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J Clin Oncol. 2018; 36: 1631–1641.

  • 12

    Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014; 6: 224ra24.

  • 13

    Kilgour E, Rothwell DG, Brady G, et al. Liquid biopsy-based biomarkers of treatment response and resistance. Cancer Cell 2020; 37: 485–495.

  • 14

    Hindson BJ, Ness KD, Masquelier DA, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 2011; 83: 8604–8610.

  • 15

    Alcaide M, Yu S, Bushell K, et al. Multiplex droplet digital PCR quantification of recurrent somatic mutations in diffuse large B-cell and follicular lymphoma. Clin Chem. 2016; 62: 1238–1247.

  • 16

    Camus V, Sarafan-Vasseur N, Bohers E, et al. Digital PCR for quantification of recurrent and potentially actionable somatic mutations in circulating free DNA from patients with diffuse large B-cell lymphoma. Leuk Lymphoma 2016; 57: 2171–2179.

  • 17

    Scherer F, Kurtz DM, Diehn M, et al. High-throughput sequencing for noninvasive disease detection in hematologic malignancies. Blood 2017; 130: 440–452.

  • 18

    Malapelle U, Sirera R, Jantus-Lewintre E, et al. Profile of the Roche cobas(R) EGFR mutation test v2 for non-small cell lung cancer. Expert Rev Mol Diagn. 2017; 17: 209–215.

  • 19

    Warren JD, Xiong W, Bunker AM, et al. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med. 2011; 9: 133.

  • 20

    Melani C, Wilson WH, and Roschewski M Liquid biopsy in non-Hodgkin’s lymphoma. Hematol Oncol. 2019; 37 Suppl 1: 70–74.

  • 21

    Roschewski M, Staudt LM, Wilson WH. Dynamic monitoring of circulating tumor DNA in non-Hodgkin lymphoma. Blood 2016; 127: 3127–3132.

  • 22

    Kurtz DM. Prognostication with circulating tumor DNA: is it ready for prime time? Hematology Am Soc Hematol Educ Program 2019; 2019: 47–52.

  • 23

    Kurtz DM, Green MR, Bratman SV, et al. Noninvasive monitoring of diffuse large B-cell lymphoma by immunoglobulin high- throughput sequencing. Blood 2015; 125: 3679–3687.

  • 24

    Roschewski M, Dunleavy K, Pittaluga S, et al. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet Oncol. 2015; 16: 541–549.

  • 25

    Scherer F, Kurtz DM, Newman AM, et al. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci Transl Med. 2016; 8: 364ra155.

  • 26

    Rossi D, Diop F, Spaccarotella E, et al. Diffuse large B-cell lymphoma genotyping on the liquid biopsy. Blood 2017; 129: 1947–1957.

  • 27

    Jin MC, Kurtz DM, Esfahani MS, et al. Noninvasive detection of clinically relevant copy number alterations in diffuse large B-cell lymphoma. Journal of Clinical Oncology 2017; 35: 7507–7507.

  • 28

    Assouline SE, Nielsen TH, Yu S, et al. Phase 2 study of panobinostat with or without rituximab in relapsed diffuse large B-cell lymphoma. Blood 2016; 128: 185–194.

  • 29

    Kurtz DM, Scherer F, Jin MC, et al. Circulating tumor DNA measurements as early outcome predictors in diffuse large B-cell lymphoma. J Clin Oncol. 2018; 36: 2845–2853.

  • 30

    Sworder B, Kurtz DM, Macaulay C, et al. Circulating DNA for molecular response prediction, characterization of resistance mechanisms and quantification of CAR T-cells during axicabtagene ciloleucel therapy. Blood 2019; 134: 550–550.

  • 31

    van Oers MH, Tonnissen E, Van Glabbeke M, et al. BCL-2/IgH polymerase chain reaction status at the end of induction treatment is not predictive for progression-free survival in relapsed/resistant follicular lymphoma: results of a prospective randomized EORTC 20981 phase III intergroup study. J Clin Oncol. 2010; 28: 2246–2252.

  • 32

    Roulland S, Kelly RS, Morgado E, et al. t(14;18) translocation: A predictive blood biomarker for follicular lymphoma. J Clin Oncol. 2014; 32: 1347–1355.

  • 33

    Rambaldi A, Carlotti E, Oldani E, et al. Quantitative PCR of bone marrow BCL2/IgH+ cells at diagnosis predicts treatment response and long-term outcome in follicular non-Hodgkin lymphoma. Blood 2005; 105: 3428–3433.

  • 34

    Mandigers CM, Meijerink JP, Mensink EJ, et al. Lack of correlation between numbers of circulating t(14;18)-positive cells and response to first-line treatment in follicular lymphoma. Blood 2001; 98: 940–944.

  • 35

    Lambrechts AC, Hupkes PE, Dorssers LC, et al. Clinical significance of t(14; 18)-positive cells in the circulation of patients with stage III or IV follicular non-Hodgkin’s lymphoma during first remission. J Clin Oncol. 1994; 12: 1541–1546.

  • 36

    Gribben JG, Neuberg D, Barber M, et al. Detection of residual lymphoma cells by polymerase chain reaction in peripheral blood is significantly less predictive for relapse than detection in bone marrow. Blood 1994; 83: 3800–3807.

  • 37

    Sarkozy C, Huet S, Carlton VE, et al. The prognostic value of clonal heterogeneity and quantitative assessment of plasma circulating clonal IG-VDJ sequences at diagnosis in patients with follicular lymphoma. Oncotarget. 2017; 8: 8765–8774.

  • 38

    Delfau-Larue MH, van der Gucht A, Dupuis J, et al. Total metabolic tumor volume, circulating tumor cells, cell-free DNA: distinct prognostic value in follicular lymphoma. Blood Adv. 2018; 2: 807–816.

  • 39

    Bodor C, Grossmann V, Popov N, et al. EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood 2013; 122: 3165–3168.

  • 40

    Okosun J, Bodor C, Wang J, et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet. 2014; 46: 176–181.

  • 41

    Bátai B, Lévai D, Gaál-Weisinger J, et al. New perspective in the personalized medicine of follicular lymphoma – Targeting the EZH2 histon methyltransferase. Hematológia−Transzfuziológia 2018; 51: 61–70.

  • 42

    FDA, FDA granted accelerated approval to tazemetostat for follicular lymphoma. 2020: https://www.fda.gov/drugs/fda-granted-accelerated-approval-tazemetostat-follicular-lymphoma.

  • 43

    Morschhauser F, Tilly H, Chaidos A, et al. Phase 2 multicenter study of tazemetostat, an EZH2 inhibitor, in patients with relapsed or refractory follicular lymphoma. Blood 2019; 134: 123–123.

  • 44

    McDonald A, Thomas E, Daigle S, et al. Updated report on identification of molecular predictors of tazemetostat response in an ongoing NHL phase 2 study. Blood 2018; 132: 4097–4097.

  • 45

    Nagy A, Batai B, Balogh A, et al. Quantitative analysis and monitoring of EZH2 mutations using liquid biopsy in follicular lymphoma. Genes (Basel). 2020; 11.

  • 46

    Fontanilles M, Marguet F, Bohers E, et al. Non-invasive detection of somatic mutations using next-generation sequencing in primary central nervous system lymphoma. Oncotarget. 2017; 8: 48157–48168.

  • 47

    Hattori K, Sakata-Yanagimoto M, Suehara Y, et al. Clinical significance of disease-specific MYD88 mutations in circulating DNA in primary central nervous system lymphoma. Cancer Sci. 2018; 109: 225–230.

  • 48

    Watanabe J, Natsumeda M, Kanemaru Y, et al. Comparison of circulating tumor DNA between body fluids in patients with primary central nervous system lymphoma. Leuk Lymphoma 2019; 60: 3587–3589.

  • 49

    Zorofchian S, Lu G, Zhu JJ, et al. Detection of the MYD88 p.L265P mutation in the CSF of a patient with secondary central nervous system lymphoma. Front Oncol. 2018; 8: 382.

  • 50

    Hiemcke-Jiwa LS, Leguit RJ, Snijders TJ, et al. MYD88 p.(L265P) detection on cell-free DNA in liquid biopsies of patients with primary central nervous system lymphoma. Br J Haematol. 2019; 185: 974–977.

  • 51

    Hickmann AK, Frick M, Hadaschik D, et al. Molecular tumor analysis and liquid biopsy: a feasibility investigation analyzing circulating tumor DNA in patients with central nervous system lymphomas. BMC Cancer. 2019; 19: 192.

  • 52

    Bobillo S, Crespo M, Escudero L, et al. Cell free circulating tumor DNA in cerebrospinal fluid detects and monitors central nervous system involvement of B-cell lymphomas. Haematologica 2020.

  • 53

    Grommes C, Tang SS, Wolfe J, et al. Phase 1b trial of an ibrutinib-based combination therapy in recurrent/refractory CNS lymphoma. Blood 2019; 133: 436–445.

  • 54

    Pott C, Schrader C, Gesk S, et al. Quantitative assessment of molecular remission after high-dose therapy with autologous stem cell transplantation predicts long-term remission in mantle cell lymphoma. Blood 2006; 107: 2271–2278.

  • 55

    Cheminant M, Derrieux C, Touzart A, et al. Minimal residual disease monitoring by 8-color flow cytometry in mantle cell lymphoma: an EU-MCL and LYSA study. Haematologica 2016; 101: 336–345.

  • 56

    Roschewski MJ, Melani CJ, Pittaluga S, et al. Circulating tumor DNA to predict timing of relapse in mantle cell lymphoma. Journal of Clinical Oncology 2018; 36: 7576–7576.

  • 57

    Lakhotia R, Melani C, Pittaluga S, et al. Circulating tumor DNA dynamics during therapy predict outcomes in mantle cell lymphoma. Blood 2018; 132: 147–147.

  • 58

    Agarwal R, Chan YC, Tam CS, et al. Dynamic molecular monitoring reveals that SWI-SNF mutations mediate resistance to ibrutinib plus venetoclax in mantle cell lymphoma. Nat Med. 2019; 25: 119–129.

  • 59

    Pizzi M, Margolskee E, Inghirami G. Pathogenesis of peripheral T-cell lymphoma. Annu Rev Pathol. 2018; 13: 293–320.

  • 60

    Sakata-Yanagimoto M, Nakamoto-Matsubara R, Komori D, et al. Detection of the circulating tumor DNAs in angioimmunoblastic T-cell lymphoma. Ann Hematol. 2017; 96: 1471–1475.

  • 61

    Sun P, Chen C, Xia Y, et al. Mutation profiling of malignant lymphoma by next-generation sequencing of circulating cell-free DNA. J Cancer. 2019; 10: 323–331.

  • 62

    Melani C, Pittaluga S, Yee L, et al. Next-generation sequencing based monitoring of circulating-tumor DNA in untreated peripheral T-cell lymphoma. Blood 2017; 130: 2728–2728.

  • 63

    Borchmann S, Engert A. The genetics of Hodgkin lymphoma: an overview and clinical implications. Curr Opin Oncol. 2017; 29: 307–314.

  • 64

    Jin MC, Schroers-Martin JG, Kurtz DM, et al. Noninvasive genotyping and monitoring of classical Hodgkin lymphoma. Blood 2018; 132: 2838–2838.

  • 65

    Hohaus S, Giachelia M, Massini G, et al. Cell-free circulating DNA in Hodgkin’s and non-Hodgkin’s lymphomas. Ann Oncol. 2009; 20: 1408–1413.

  • 66

    Vandenberghe P, Wlodarska I, Tousseyn T, et al. Non-invasive detection of genomic imbalances in Hodgkin/Reed-Sternberg cells in early and advanced stage Hodgkin’s lymphoma by sequencing of circulating cell-free DNA: a technical proof-of-principle study. Lancet Haematol. 2015; 2: e55–65.

  • 67

    Camus V, Stamatoullas A, Mareschal S, et al. Detection and prognostic value of recurrent exportin 1 mutations in tumor and cell-free circulating DNA of patients with classical Hodgkin lymphoma. Haematologica 2016; 101: 1094–1101.

  • 68

    Spina V, Bruscaggin A, Cuccaro A, et al. Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma. Blood 2018; 131: 2413–2425.

  • 69

    Herrera AF, Kim HT, Kong KA, et al. Next-generation sequencing-based detection of circulating tumour DNA After allogeneic stem cell transplantation for lymphoma. Br J Haematol. 2016; 175: 841–850.

  • 70

    Oki Y, Neelapu SS, Fanale M, et al. Detection of classical Hodgkin lymphoma specific sequence in peripheral blood using a next-generation sequencing approach. Br J Haematol. 2015; 169: 689–693.

  • 71

    Pugh TJ. Circulating tumour DNA for detecting minimal residual disease in multiple myeloma. Semin Hematol. 2018; 55: 38–40.

  • 72

    Waldschmidt JM, Anand P, Knoechel B, et al. Comprehensive characterization of circulating and bone marrow-derived multiple myeloma cells at minimal residual disease. Semin Hematol. 2018; 55: 33–37.

  • 73

    Mithraprabhu S, Khong T, Ramachandran M, et al. Circulating tumour DNA analysis demonstrates spatial mutational heterogeneity that coincides with disease relapse in myeloma. Leukemia 2017; 31: 1695–1705.

  • 74

    Gerber B, Manzoni M, Spina V, et al. Circulating tumor DNA as a liquid biopsy in plasma cell dyscrasias. Haematologica 2018; 103: e245–e248.

  • 75

    Kis O, Kaedbey R, Chow S, et al. Circulating tumour DNA sequence analysis as an alternative to multiple myeloma bone marrow aspirates. Nat Commun. 2017; 8: 15086.

  • 76

    Mithraprabhu S, Morley R, Khong T, et al. Monitoring tumour burden and therapeutic response through analysis of circulating tumour DNA and extracellular RNA in multiple myeloma patients. Leukemia 2019; 33: 2022–2033.

  • 77

    Biancon G, Gimondi S, Vendramin A, et al. Noninvasive molecular monitoring in multiple myeloma patients using cell-free tumor DNA: A pilot study. J Mol Diagn. 2018; 20: 859–870.

  • 78

    Mazzotti C, Buisson L, Maheo S, et al. Myeloma MRD by deep sequencing from circulating tumor DNA does not correlate with results obtained in the bone marrow. Blood Adv. 2018; 2: 2811–2813.

  • 79

    Oberle A, Brandt A, Voigtlaender M, et al. Monitoring multiple myeloma by next-generation sequencing of V(D)J rearrangements from circulating myeloma cells and cell-free myeloma DNA. Haematologica 2017; 102: 1105–111.

  • 80

    Rustad EH, Coward E, Skytoen ER, et al. Monitoring multiple myeloma by quantification of recurrent mutations in serum. Haematologica 2017; 102: 1266–1272.

  • 81

    Rajeev Krishnan S, De Rubis G, Suen H, et al. A liquid biopsy to detect multidrug resistance and disease burden in multiple myeloma. Blood Cancer J. 2020; 10: 37.

  • 82

    Manier S, Park J, Capelletti M, et al. Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma. Nat Commun. 2018; 9: 1691.

  • 83

    Yeh P, Hunter T, Sinha D, et al. Circulating tumour DNA reflects treatment response and clonal evolution in chronic lymphocytic leukaemia. Nat Commun. 2017; 8: 14756.

  • 84

    Kiss R, Alpar D, Gango A, et al. Spatial clonal evolution leading to ibrutinib resistance and disease progression in chronic lymphocytic leukemia. Haematologica 2019; 104: e38–e41.

  • 85

    Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017; 377: 454–464.

  • 86

    Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016; 374: 2209–2221.

  • 87

    Klco JM, Miller CA, Griffith M, et al. Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia. JAMA 2015; 314: 811–822.

  • 88

    Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017; 129: 424–447.

  • 89

    Krizsán S, Dénes Z, Gángó A, et al. Visszatérő genetikai eltérések vizsgálata akut myeloid leukémiában az új célzott terápiák tükrében. Hematológia–Transzfuziológia 2019; 52: 96–105.

  • 90

    Schuurhuis GJ, Heuser M, Freeman S, et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood 2018; 131: 1275–1291.

  • 91

    Vasioukhin V, Anker P, Maurice P, et al. Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br J Haematol. 1994; 86: 774–779.

  • 92

    Quan J, Gao YJ, Yang ZL, et al. Quantitative detection of circulating nucleophosmin mutations DNA in the plasma of patients with acute myeloid leukemia. Int J Med Sci. 2015; 12: 17–22.

  • 93

    Ma W, Kantarjian H, Zhang X, et al. Detection of nucleophosmin gene mutations in plasma from patients with acute myeloid leukemia: clinical significance and implications. Cancer Biomark. 2009; 5: 51–58.

  • 94

    Nakamura S, Yokoyama K, Shimizu E, et al. Prognostic impact of circulating tumor DNA status post-allogeneic hematopoietic stem cell transplantation in AML and MDS. Blood 2019; 133: 2682–2695.

  • 95

    Suzuki Y, Tomita A, Nakamura F, et al. Peripheral blood cell-free DNA is an alternative tumor DNA source reflecting disease status in myelodysplastic syndromes. Cancer Sci. 2016; 107: 1329–1337.

  • 96

    Yeh P, Dickinson M, Ftouni S, et al. Molecular disease monitoring using circulating tumor DNA in myelodysplastic syndromes. Blood 2017; 129: 1685–1690.

  • 97

    Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia 2020; 34: 966–984.

  • 98

    Choi MY, Kato S, Wang HY, et al. JAK2 V617F mutation in plasma cell-free DNA preceding clinically overt myelofibrosis: Implications for early diagnosis. Cancer Biol Ther. 2018; 19: 664–668.