View More View Less
  • 1 Somogy Megyei Kaposi Mór Oktató Kórház, Hematológiai Osztály, H-7400 Kaposvár, Tallián Gyula utca 20–32.
Open access

Összefoglaló. A humán szervezetnek az alapvető biokémiai reakcióihoz vasra és annak biztonságos használatára van szükség. Emberben vasexcretios út hiányában a vasanyagcsere sarkalatos pontja a duodenális absorptio, amelyet a májsejtek által termelt hormon, a hepcidin szabályoz. A hepcidin a ferroportin lisosomalis degradációját okozva blokkolja a vasnak a vérbe való belépését a duodenális enterocytából, a reticuloendothelialis rendszer (RES) macrophagokból és a májsejtekből. A reguláló hormon képzését a szervezet vaskészlete mellett az erythropoiesis, hypoxia és inflammatorikus folyamatok befolyásolják. A szabályozás kóros eltérései vashiány vagy vasterhelés útján súlyos betegségeket okozhatnak. A hepcidin képződését befolyásoló folyamatokat illetően ismereteink jelentősen gyarapodtak, közleményünk célja ezek bemutatása.

Summary. The basic biochemical reactions of the human body require iron and its safe utilisation. In absence of an iron-excreation pathway in human, the pivotal point of iron metabolism is duodenal absorption, which is regulated by a hormone produced by liver cells, the hepcidin. Causing lisosomal degradation of ferroportin, hepcidin blocks the iron entry into the blood from duodenal enterocytes, reticuloendothelial system (RES) macrophages, and liver cells. In addition to the body’s iron stores, the production of the regulatory hormone is also affected by erythropoiesis, hypoxia and inflammatory processes. Abnormal regulation can lead to serious illness through iron deficiency or iron stress. Regarding the processes influencing the formation of hepcidin, our knowledge has significantly increased and the aim of our paper is to present them.

  • 1

    Egyed M. Iron metabolism and its disorders. [A vasanyagcsere és betegségei.] Semmelweis Kiadó, Budapest, 2007

  • 2

    Ganz T. Systemic iron homeostasis. Physiological Reviews 2013; 93: 1721–1741.

  • 3

    Roth MP, Meynard D, Coppin H. Regulators of hepcidin expression. Vitamins and Hormones 2019; 110: 101–129.

  • 4

    Girelli D, Nemeth E, Swinkels DW. Hepcidin in the diagnosis of iron disorders. Blood 2016; 127: 2809–2813.

  • 5

    Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004; 306: 2090–2093.

  • 6

    Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001; 276: 7806–7810.

  • 7

    Zhao N, Zhang AS, Enns CA. Iron regulation by hepcidin. J Clin Invest 2013; 123: 2337–2343.

  • 8

    Nicolas G, Chauvet C, Viatte L, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 110: 1037–1044.

  • 9

    Niederkofler V, Salie R, Arber S. Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. J Clin Invest 2005; 115: 2180–2186.

  • 10

    Nili M, Shinde U, Rotwein P. Soluble repulsive guidance molecule c/hemojuvelin is a broad spectrum bone morphogenetic protein (BMP) antagonist and inhibits both BMP2- and BMP6-mediated signaling and gene expression. J Biol Chem 2010; 285: 24783–24792.

  • 11

    Zhang AS, Yang F, Meyer K, et al. Neogenin-mediated hemojuvelin shedding occurs after hemojuvelin traffics to the plasma membrane. J Biol Chem 2008; 283: 17494–17502.

  • 12

    Healey EG, Bishop B, Elegheert J, et al. Repulsive guidance molecule is a structural bridge between neogenin and bone morphogenetic protein. Nat Struct Mol Biol 2015; 22: 458–465.

  • 13

    Feder JN, Gnirke A, Thomas W, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nature Genetics 1996; 13: 399–408.

  • 14

    Parkkila S, Parkkila AK, Waheed A, et al. Cell surface expression of HFE protein in epithelial cells, macrophages, and monocytes. Haematologica 2000; 85: 340–345.

  • 15

    Baker EN, Lindley PF. New perspectives on the structure and function of transferrins. Journal of Inorganic Biochemistry 1992; 47: 147–160.

  • 16

    Kawabata H. Transferrin and transferrin receptors update. Free Radical Biology & Medicine. 2019; 133: 46–54.

  • 17

    Kawabata H, Yang R, Hirama T, et al. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J Biol Chem 1999; 274: 20826–20832.

  • 18

    Roetto A, Totaro A, Piperno A, et al. New mutations inactivating transferrin receptor 2 in hemochromatosis type 3. Blood 2001; 97: 2555–2560.

  • 19

    Parrow NL, Fleming RE. Bone morphogenetic proteins as regulators of iron metabolism. Annu Rev Nutr 2014; 34: 77–94.

  • 20

    Andriopoulos B Jr, Corradini E, Xia Y, et al. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat Genet 2009; 41: 482–487.

  • 21

    Corradini E, Meynard D, Wu Q et al. Serum and liver iron differently regulate the bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway in mice. Hepatology 2011; 54: 273–284.

  • 22

    Mayeur C, Leyton PA, Kolodziej SA, et al. BMP type II receptors have redundant roles in the regulation of hepatic hepcidin gene expression and iron metabolism. Blood 2014; 124: 2116–2123.

  • 23

    Mayeur C, Lohmeyer LK, Leyton P, et al. The type I BMP receptor Alk3 is required for the induction of hepatic hepcidin gene expression by interleukin-6. Blood 2014; 123: 2261–2268.

  • 24

    Nohe A, Hassel S, Ehrlich M, et al. The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways. J Biol Chem 2002; 277: 5330–5338.

  • 25

    Folgueras AR, de Lara FM, Pendas AM, et al. Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis Blood 2008; 112: 2539–2545.

  • 26

    Silvestri L, Guillem F, Pagani A, et al. Molecular mechanisms of the defective hepcidin inhibition in TMPRSS6 mutations associated with iron-refractory iron deficiency anemia. Blood 2009; 8: 8.

  • 27

    Silvestri L, Pagani A, Nai A, et al. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab 2008; 8: 502–511.

  • 28

    Finberg KE, Heeney MM, Campagna DR, et al. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat Genet 2008; 40: 569–571.

  • 29

    D’Alessio F, Hentze MW, Muckenthaler MU. The hemochromatosis proteins HFE, TfR2, and HJV form a membrane-associated protein complex for hepcidin regulation. J Hepatol 2012; 57: 1052–1060.

  • 30

    Goswami T, Andrews NC. Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing. J Biol Chem 2006; 281: 28494–28498.

  • 31

    Enns CA, Ahmed R, Wang J, et al. Increased iron loading induces Bmp6 expression in the non-parenchymal cells of the liver independent of the BMP-signaling pathway. PLoS One 2013; 8: e60534.

  • 32

    Camaschella C. Understanding iron homeostasis through genetic analysis of hemochromatosis and related disorders. Blood 2005; (12): 3710–3717.

  • 33

    Meynard D, Kautz L, Darnaud V, Canonne-Hergaux F. Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nat Genet 2009; 41: 478–481.

  • 34

    Tanno T, Porayette P, Sripichai O, et al. Identification of TWSG1 as a second novel erythroid regulator of hepcidin expression in murine and human cells. Blood 2009; 114: 181–186.

  • 35

    Tanno T, Bhanu NV, Oneal PA, et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med 2017; 13: 1096–1101.

  • 36

    Kautz L, Jung G, Valore EV, et al. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet 2014; 46: 678–684.

  • 37

    Coffey R, Ganz T. Erythroferrone: An erythroid regulator of hepcidin and iron metabolism. HemaSphere 2018; 2(2): e35. .

    • Crossref
    • Export Citation
  • 38

    Ganz T, Jung G, Naeim A, et al. Immunoassay for human serum erythroferron. Blood 2017; 130: 1243–1246.

  • 39

    Katsarou A, Pantopoulos K. Basics and principles of cellular and systemic iron homeostasis. Molecular Aspects of Medicine 2020; 75: 100866.

  • 40

    Kautz L, Jung G, Du X, et al. Erythroferrone contributes to hepcidin suppression and iron overload in a mouse model of β-thalassemia. Blood 2015; 126: 2031–2037.

  • 41

    Liu Q, Davidoff O, Niss K, Haase VH. Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis. J Clin Invest 2015; 122: 4635–4644.

  • 42

    Gupta N, Wish JB. Hypoxia-inducible factor prolyl hydroxylase inhibitors: a potential new treatment for anemia in patients with CKD. American Journal of Kidney Diseases 2017; 69: 815–826.

  • 43

    Wang CY, Babitt JL. Hepcidin regulation in the anemia of inflammation. Curr Opin Hematol 2016; 23: 189–197.

  • 44

    Sangkhae V, Nemeth E. To induce or not to induce: the fight over hepcidin regulation. Hematologica 2019; 104: 1093–1095.

  • 45

    Wallace DF, Subramaniam VN. Analysis of IL-22 contribution to hepcidin induction and hypoferremia during the response to LPS in vivo. Int Immunol 2015; 27: 281–287.

  • 46

    Shanmugam NK, Chen K, Cherayil BJ. Commensal bacteria-induced interleukin 1β (IL-1β) secreted by macrophages up-regulates hepcidin expression in hepatocytes by activating the bone morphogenetic protein signaling pathway. J Biol Chem 2015; 290: 30637–30647.

 

The author instruction is available in PDF.
Please, download the file from HERE.
 

 

  • Árpád ILLÉS (Debreceni Egyetem, főszerkesztő)
  • Csaba BÖDÖR (Semmelweis Egyetem, főszerkesztő-helyettes)
  • Judit DEMETER (Semmelweis Egyetem, főszerkesztő-helyettes)
  • Lajos GERGELY (Debreceni Egyetem, főszerkesztő-helyettes)
  • Imelda MARTON (Szegedi Tudományegyetem, főszerkesztő-helyettes)
  • Gábor MIKALA (Dél-Pesti Centrumkórház, Országos Hematológiai és Infektológiai Intézet, főszerkesztő-helyettes)
  • Dezső LEHOCZKY (Semmelweis Egyetem, emeritus főszerkesztő)
  • Sándor FEKETE (Dél-Pesti Centrumkórház, Országos Hematológiai és Infektológiai Intézet, emeritus főszerkesztő)
  • Hajnalka ANDRIKOVICS (Dél-Pesti Centrumkórház, Országos Hematológiai és Infektológiai Intézet, szerkesztő)
  • Zita BORBÉNYI (Szegedi Tudományegyetem, szerkesztő)
  • Miklós EGYED (Somogy Megyei Kaposi Mór Oktató Kórház, szerkesztő)
  • Alizadeh HUSSAIN (Pécsi Tudományegyetem, szerkesztő)
  • Judit JAKAB (Országos Vérellátó Szolgálat, szerkesztő)
  • Béla KAJTÁR (Pécsi Tudományegyetem, szerkesztő)
  • Tamás MASSZI (Semmelweis Egyetem, szerkesztő)
  • Zsolt György NAGY (Semmelweis Egyetem, szerkesztő)
  • György PFLIEGLER (Debreceni Egyetem, szerkesztő)
  • Péter REMÉNYI (Dél-Pesti Centrumkórház, Országos Hematológiai és Infektológiai Intézet, szerkesztő)
  • Marienn RÉTI (Dél-Pesti Centrumkórház, Országos Hematológiai és Infektológiai Intézet, szerkesztő)
  • Tamás SCHNEIDER (Országos Onkológiai Intézet, szerkesztő)
  • László SZERAFIN (Szabolcs-Szatmár-Bereg Megyei Jósa András Oktatókórház, Nyíregyháza, szerkesztő)
  • Attila TORDAI (Semmelweis Egyetem, szerkesztő)

Hematológia-Transzfuziológia Szerkesztőség
Dr. Illés Árpád
Debreceni Egyetem Klinikai Központ
Belgyógyászati Intézet B épület
4012 Debrecen, Nagyerdei krt. 98. Pf.: 20.
E-mail: illesarpaddr@gmail.com

2020  
CrossRef Documents 16
CrossRef Cites 0
CrossRef H-index 1
Days from submission to acceptance 27
Days from acceptance to publication 28
Acceptance Rate 100%

2019  
CrossRef
Documents
27
Acceptance
Rate
98%

 

Hematológia-Transzfuziológia
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subscription: 80 EUR / 100 USD
Subscription fee 2022 Online subscription: 82 EUR / 102 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Hematológia-Transzfuziológia
Language Hungarian
Size A4
Year of
Foundation
2004
Publication
Programme
2021 Volume 54
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Hematológiai és Transzfuziológiai Társaság
Founder's
Address
Szent László Kórház, Hematológiai Osztály H-1097 Budapest, Hungary Gyáli út 5-7.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1786-5913 (Print)