Author:
József Tóth University of Alberta, Edmonton, Canada

Search for other papers by József Tóth in
Current site
Google Scholar
PubMed
Close
Open access

Gravity-driven groundwater flow systems function in topographic basins as subsurface conveyor belts. They pick up and move fluids, gases, solutes, colloids, particulate matter and heat from loading sites in recharge areas and/or on their way to the discharge areas and can deliver them “en route” or in discharge regions. Gravitational flow systems of various horizontal and vertical extents are organized into hierarchically nested complex patterns controlled by the configuration of the water table’s relief and modified by the rock framework’s heterogeneities of permeability. The systems are ubiquitous and act simultaneously on broad ranges of the spatial and temporal scales of measurement. Their universal geologic agency is manifest by numerous different, even disparate, natural processes and phenomena. Several of these are associated with geothermal heat flow. The understanding of geothermal phenomena in the context of basinal flow systems requires, therefore, an intimate familiarity with the overarching “Theory of regional groundwater flow” which, in turn, comprises two component theories: “The hydraulics of basin-scale groundwater flow systems” and “The geologic agency of basin-scale groundwater flow-systems”. The paper’s outline is based on this conceptual structure. The paper presents examples for geothermal effects of groundwater flow by means of the first theoretical models and some case studies of thermal springs and wells, and petroleum accumulations. The final section reflects the author’s conviction that geothermal studies cannot be complete without consideration and understanding of the area’s groundwater flow regime.

  • Anderson, M.P. 2005: Heat as a ground water tracer. — Ground Water, 43/6, pp. 951962.

  • Beck, A.E., G. Garven, L. Stegena (Eds) 1989: Hydrogeological regimes and their subsurface thermal effects. — Geophysical Monograph 47/2, American Geophysical Union, Washington, DC, 158 p.

    • Search Google Scholar
    • Export Citation
  • Bethke, C.M. 1985: A numerical model of compaction-driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins. — Journal of Geophysical Research, 90/B7, pp. 68176828.

    • Search Google Scholar
    • Export Citation
  • Deming, D. 2002: Introduction to Hydrogeology. — McGraw-Hill, New York, 480 p.

  • Deming, D., J.H. Sass, A.H. Lachenbruch, R.F. De Rito 1992: Heat flow and subsurface temperature as evidence for basin scale groundwater flow, North Slope of Alaska. — Geological Society of America Bulletin, 104, pp. 528542.

    • Search Google Scholar
    • Export Citation
  • Domenico, P.A., V.V. Palciauskas 1973: Theoretical analysis of forced convective heat transfer in regional groundwater flow. — Geological Society of America Bulletin, 84, pp. 38033814.

    • Search Google Scholar
    • Export Citation
  • Erőss, A., J. Mádl-Szőnyi, A. Csoma 2008: Characteristics of discharge at Rose and Gellért Hills, Budapest, Hungary. — Central European Geology, 51/3, pp. 267281.

    • Search Google Scholar
    • Export Citation
  • Fitts, C.R. 1991: Modeling three-dimensional flow about ellipsoidal inhomogeneities with application to flow to a gravel-packed well and flow through lens-shaped inhomogenities. — Water Resource Research 27/5, pp. 815824.

    • Search Google Scholar
    • Export Citation
  • Freeze, R.A., P.A. Witherspoon 1967: Theoretical analysis of regional groundwater flow. 2. Effect of water table configuration and subsurface permeability variation. — Water Resources Research, 3/2, pp. 623634.

    • Search Google Scholar
    • Export Citation
  • Jiang, X.W., X.S. Wang, L. Wan, S. Ge 2011: An analytical study on stagnation points in nested flow systems in basins with depth-decaying hydraulic conductivity. — Water Resources Research, 47/1, pp. n/a.

    • Search Google Scholar
    • Export Citation
  • Jones, G., Q.J. Fisher, R.J. Knipe (Eds) 1998: Faulting, fault sealing and fluid flow in hydrocarbon reservoirs. — Geological Society Special Publication, 147, London, 319 p.

    • Search Google Scholar
    • Export Citation
  • Lazear, G.D. 2006: Evidence for deep groundwater flow and convective heat transport in mountainous terrain, Delta County, Colorado. U.S.A. — Hydrogeology Journal, 14/8, pp. 15821598.

    • Search Google Scholar
    • Export Citation
  • Obdam, A.N.M, E.J.M. Veiling 1987: Elliptical inhomogeneities in groundwater flow. An analytical description. — Journal of Hydrogeology, 95, pp. 8796.

    • Search Google Scholar
    • Export Citation
  • Robinson, N.I., A.J. Love 2013: Hidden channels of groundwater flow in Tóthian drainage basins. — Advances in Water Resources, 68, pp. 7178.

    • Search Google Scholar
    • Export Citation
  • Romijn, E., E. Groba, G. Lüttig, K. Fiedler, R. Laugier, E. Löhnert, C. Garagunis (Eds) 1985: Geothermics Thermal–Mineral Waters and Hydrogeology. — Theophrastus Publications S.A., Athens, 264 p.

    • Search Google Scholar
    • Export Citation
  • Rybach, L. (Ed) 1985: Heat Flow and Geothermal Processes. — Proceedings of IUGG Inter-disciplinary Symposium, 10, Hamburg, Journal of Geodynamics, Special Issue 4.

    • Search Google Scholar
    • Export Citation
  • Schnaebele, R. 1948: Monographie géologique du champ pétrolifière de Pechelbronn. — Mém. Serv. Carte Géol. Als. Lorr., 7, 254 p.

    • Search Google Scholar
    • Export Citation
  • Schoeller, H. 1962: Les Eaux Souterraines. — Masson & Cie, Paris, 642 p.

  • Smith, L., D.S. Chapman 1983: On the thermal effects of groundwater flow 1. Regional scale systems. — Journal of Geophysical Research, 88, pp. 593608.

    • Search Google Scholar
    • Export Citation
  • Tóth, J. 1962: A theory of groundwater motion in small drainage basins in central Alberta, Canada. — Journal of Geophysical Research, 67/11, pp. 43754387.

    • Search Google Scholar
    • Export Citation
  • Tóth, J. 1963: A theoretical analysis of groundwater flow in small drainage basins. — Journal of Geophysical Research, 68/10, pp. 47954812.

    • Search Google Scholar
    • Export Citation
  • Tóth, J. 1970: A conceptual model of the groundwater regime and the hydrogeologic environment. — Journal of Hydrology, 10/2, pp. 164176.

    • Search Google Scholar
    • Export Citation
  • Tóth, J. 1980: Cross-formational gravity flow of groundwater: A mechanism of the transport and accumulation of petroleum (The generalized hydraulic theory of petroleum migration). — In: Roberts, W.H., R.J. Cordell (Eds) 1980: Problems of Petroleum Migration. AAPG Studies in Geology, 10, Tulsa, pp. 121167.

    • Search Google Scholar
    • Export Citation
  • Tóth, J. 1984: The role of regional gravity flow in the chemical and thermal evolution of ground water. — In: Hitchon, B., E.I. Wallick (Eds): Proceedings, Practical Applications of Ground Water Geochemistry. First Canadian/American Conference on Hydrogeology, National Water Well Association and Alberta Research Council, Worthington, pp. 339.

    • Search Google Scholar
    • Export Citation
  • Tóth, J. 1999: Groundwater as a geologic agent: An overview of the causes, processes, and manifestations. — Hydrogeology Journal, 7/1, pp. 114.

    • Search Google Scholar
    • Export Citation
  • Tóth, J. 2009: Gravitational systems of groundwater flow: Theory, Evaluation, Utilization. — Cambridge University Press, Cambridge, 297 p.

    • Search Google Scholar
    • Export Citation
  • Tóth, J., C.J. Otto 1993: Hydrogeology and oil-deposits at Pechelbronn–Soultz, Upper Rhine Graben. — Acta Geologica Hungarica, 36/4, pp. 375393.

    • Search Google Scholar
    • Export Citation
  • Tóth, J., K. Rakhit 1988: Exploration for reservoir quality rock bodies by mapping and simulation of potentiometric surface anomalies. — Bulletin of Canadian Petroleum Geology, 36/4, pp. 362378.

    • Search Google Scholar
    • Export Citation
  • Underschultz, J.R., C.J. Otto, R. Bartlett 2005: Formation fluids in faulted aquifers: Examples from the Foothills of Western Canada and the North West Shelf of Australia. — In: Boult, P., J. Kaldi (Eds): Evaluating Fault and Caprock Seals. AAPG, Hedberg Series, 2, pp. 247260.

    • Search Google Scholar
    • Export Citation
  • Walker, G., M. Gilfedder, R. Evans, Ph. Dyson, M. Stauffacher 2003: Groundwater Flow System Framework: Essential tools for planning salinity management. — Murray-Darling Basin Commission, MDBC Publication 15/03. Canberra, Australia.

    • Search Google Scholar
    • Export Citation
  • Van der Kamp, G., S. Bachu 1989: Use of dimensional analysis in the study of thermal effects of various hydrogeological regimes. — In: Beck, A.E., G. Garven, L. Stegena (Eds): Hydrogeological Regimes and their Subsurface Thermal Effects. Geophysical Monograph 47/2, American Geophysical Union, Washington, DC., pp. 2328.

    • Search Google Scholar
    • Export Citation
  • Wang, H.F., M.P. Anderson 1982: Introduction to Groundwater Modeling. Finite Difference and Finite Element Methods. — WH Freeman and Co, San Francisco, 237 p.

    • Search Google Scholar
    • Export Citation
  • Zielinski, G.W., J.A. Drahovzal, G.M. Decoursey, J.M. Ruperto 1985: Hydrothermics in the Wyoming Overthrust belt. — AAPG Bulletin, 69/1, pp. 699709.

    • Search Google Scholar
    • Export Citation
  • Zijl, W., M. Nawalany 1993: Natural groundwater flow. — Lewis Publishers, Boca Raton, 321 p.

  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Attila DEMÉNY

Deputy Editor(s)-in-Chief: Béla RAUCSIK

Co-ordinating Editor(s): Gábor SCHMIEDL

Editorial Board

  • Zsolt BENKÓ (Geochemistry, Ar dating; Institute for Nuclear Research, Debrecen)
  • Szabolcs HARANGI (Petrology, geochemistry, volcanology; Eötvös Loránd University, Budapest)
  • Anette GÖTZ (Sedimentology; Landesamt für Bergbau, Energie und Geologie, Hannover)
  • János HAAS (Regional Geology and Sedimentology; Eötvös Loránd University, Budapest)
  • István Gábor HATVANI (Geomathematics; Institute for Geological and Geochemical Research, Budapest)
  • Henry M. LIEBERMAN (Language Editor; Salt Lake City)
  • János KOVÁCS (Quaternary geology; University of Pécs)
  • Szilvia KÖVÉR (Sedimentology; Eötvös Loránd University, Budapest)
  • Tivadar M. TÓTH (Mineralogy; Petrology    University of Szeged)
  • Stephen J. MOJZSIS (Petrology, geochemistry and planetology; University of Colorado Boulder)
  • Norbert NÉMETH (Structural geology; University of Miskolc)
  • Attila ŐSI (Paleontology; Eötvös Loránd University, Budapest)
  • József PÁLFY (Fossils and Stratigraphic Records; Eötvös Loránd University, Budapest)
  • György POGÁCSÁS (Petroleum Geology; Eötvös Loránd University, Budapest)
  • Krisztina SEBE (Tectonics, sedimentology, geomorphology University of Pécs)
  • Ioan SEGHEDY (Petrology and geochemistry; Institute of Geodynamics, Bucharest)
  • Lóránd SILYE (Paleontology; Babeș-Bolyai University, Cluj-Napoca)
  • Ákos TÖRÖK (Applied and Environmental Earth Sciences; Budapest University of Technology and Economics, Budapest)
  • Norbert ZAJZON (Petrology and geochemistry; University of Miskolc)
  • Ferenc MOLNÁR (ore geology, geochemistry, geochronology, archaeometry; Geological Survey of Finland, Espoo)

Advisory Board

Due to the changes in editorial functions, the Advisory Board has been terminated. The participation of former Advisory Board members is highly appreciated and gratefully thanked.

CENTRAL EUROPEAN GEOLOGY
Institute for Geochemical Research
Hungarian Academy of Sciences
Address: Budaörsi út 45. H-1112 Budapest, Hungary
Phone: (06 1) 309 2681
Phone/fax: (06 1) 319 3137
E-mail: demeny@geochem.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • Chemical Abstracts
  • Elsevier Geo Abstracts
  • GEOBASE
  • SCOPUS
  • Referativnyi Zhurnal
  • Zoological Abstracts

 

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.225
SJR Q rank Q3

2023  
Scopus  
CiteScore 1.4
CiteScore rank Q3 (Geology)
SNIP 0.577
Scimago  
SJR index 0.206
SJR Q rank Q4

Central European Geology
Publication Model Online only Gold Open Access
Submission Fee none
Article Processing Charge none
Regional discounts on country of the funding agency  
Further Discounts  
Subscription Information Gold Open Access
Purchase per Title  

Central European Geology
Language English
Size Vol 1-63: B5
Vol 64- : A4
Year of
Foundation
2007 (1952)
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1788-2281 (Print)
ISSN 1789-3348 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2024 0 59 13
Dec 2024 0 21 11
Jan 2025 0 45 5
Feb 2025 0 51 2
Mar 2025 0 77 2
Apr 2025 0 23 8
May 2025 0 3 0