Budapest is famous for its thermal springs and spas and outstanding thermal water resources. In the 21st century renewable energy utilization — including the use of geothermal energy — became the focus of interest. Improving the use of the different forms of geothermal energy requires the assessment of their possibilities. The potential for deep geothermal doublet systems for direct heating in Budapest was evaluated based on the temperature conditions, the depth and reconnaissance of the carbonate reservoir. NW Buda is not appropriate for thermal water exploration. SW and SE Budapest have better temperature conditions but the lithology of the reservoir is uncertain. Beneath Pest the thermal water is well exploitable. It is obvious from the map of the region that the area is promising; however, due to the hydraulic continuity of the system, reinjection is desirable. Considering the reliability of the employed data the geothermal potential map is suitable only for general orientation and guidance.
The geothermal potential map for Groundwater-sourced Heat Pump Systems (GHPS; scale = 1:40,000) was assembled by evaluating the thickness and appearance of the gravel strata and water table, complemented by the sulfate content as an aggressive component of groundwater. The original geothermal potential map series can be used for the evaluation of potential sites in Budapest. It can be concluded that the Buda side of the Danube River is almost entirely unsuitable for shallow groundwater-based heat pump installations. The only areas under consideration are Óbuda and the riverbanks. On the Pest side, there is no gravel in the central part; the largest areas close to the river and in the immediate surroundings are uncertain, with patches of suitable and possible categories. The southern and eastern area of Pest is the most prospective for GHPS installation. The potential maps only consider natural parameters; however, installation may be strongly influenced by the urbanization and the city environment.
Agemar, T., J.A. Alten, K. Kühne, A.A. Maul, S. Pester, W. Wirth, R. Schulz 2007: Development of a Geothermal Information System for Germany. — Proceedings European Geothermal Congress, Unterhaching, Germany.
Alföldi, L., L. Bélteky, T. Böcker, J. Horváth, K. Korim, P. Liebe, R. Rémi 1968: Budapest Hévizei (Thermal waters of Budapest). — VITUKI, Budapest, 365 p. (in Hungarian.
Coolbaugh, M.F., G.L. Raines, L.A. Shevenell, D.L. Sawatzky, R. Bedell, B.T. Minor 2002: A geothermal GIS for Nevada: defining regional controls and favorable exploration terrains for extensional geothermal systems. — Geothermal Resources Council Transactions, 26, pp. 485–490.
Cullin, J.R., L. Xing, E. Lee, J.D. Spitler, D.E. Fisher 2012: Feasibility of foundation heat exchangers for residential ground source heat pump systems in the United States. — ASHRAE Transactions, 118, pp. 1039–1048.
Csepregi, A. 2007: A karsztvíztermelés hatása a Dunántúli-középhegység vízháztartására (The effect of water withdrawal on the water balance of the Transdanubian Range). — In: Alföldi L., L. Kapolyi (Eds): Bányászati karsztvízszint süllyesztés a Dunántúli-középhegységben (Mining Dewatering in the Transdanubian Range). Geography Institute of Hungarian Academy of Sciences, 138, pp. 77–112.(in Hungarian.
Fülöp, J., V. Dank 1987: Magyarország kainozoikum elhagyásával készített földtani térképe (Geological map of Hungary with the omission of the Cenozoic). — Geological Institute of Hungary. (in Hungarian.
Grenerczy, Gy., A. Kenyeres, I. Fejes 2000: Present crustal movement and strain distribution in Central Europe inferred from GPS measurements. — J. Geophys. Res., 105, pp. 21835–21846.
Haas, J. (Ed.) 2001: Geology of Hungary. — Eötvös University Press, Budapest, p. 317.
Haas, J., T. Budai, L. Csontos, L. Fodor, Gy. Konrád 2010: Magyarország Pre-Kainozoós medencealjzatának földtani térképe (Pre-Cenozoic geological map of Hungary), 1:500000. — Geological Institute of Hungary. (in Hungarian.
Horváth, F., S. Cloetingh 1996: Stress-induced late stage subsidence anomalies in the Pannonian basin. — Tectonophysics, 266, pp. 287–300.
Horváth, F., B. Musitz, A. Balázs, A. Végh, A. Uhrin, A. Nádor, B. Koroknai, N. Pap, T. Tóth, G. Wórum 2015: Evolution of the Pannonian basin and its geothermal resources. — Geothermics, 53, pp. 328–352.
Kázmér, M., S. Kovács 1985: Permian-Paleogene paleogeography along the eastern part of the Insubric-Periadriatic lineament system: evidence for continental escaper of the Bakony-Drauzug unit. — Acta Geol. Hung., 28/1–2, pp. 71–84.
Kohl, T., N. Andenmatten-Berthoud, L. Rybach 2003: Geothermal resource mapping example from northern Switzerland. — Geothermics, 32, pp. 721–732.
Lenkey, L., P. Dövényi, F. Horváth, S. Cloething 2002: Geothermics of the Pannonian basin and its bearing on the neotectonics. — EGU Stephan Mueller Special Publication Series, 3, pp. 29–40.
Lorberer, Á. 1984: Budapest környezetének geotermikus térképe (Geothermal map of surroundings of Budapest), 1:100 000. — Manuscript, VITUKI. (in Hungarian.
Lorberer, Á. 2002: A budapesti termálkarszt állapotértékelése (Budapest thermal karst status assessment). — Final report, VITUKI, pp. 1–45.(in Hungarian.
Lorberer, Á. 2003: A Dunántúli-középhegység karsztvízszint térképe, ÉK-rész, 2003. 01. 01-i állapot (Karst water map of the Transdanubian Range NE at 01/01/2003), 1:200 000. — VITUKI, Budapest. (in Hungarian.
Mádl-Szőnyi, J. 2014: Genesis and utilization of thermal flow in deep carbonate systems. — In: Stevanović, Z., N. Kresić N. (Eds): Characterization and Engineering of Karst Aquifers. Springer, in press.
Nam, Y., R. Ooka 2011: Development of potential map for ground and groundwater heat pump systems and the application to Tokyo. — Energy and Buildings, 43/2–3, pp. 677–685.
Odenka, J., M.I. Rüsgen, I. Strober, K. Czurda 2007: GIS-supported mapping of shallow geothermal-potential of representative areas in south-western Germany: possibilities and limitations. — Renewable Energy, 32, pp. 2186–2200.
Papp, F. 1942: Budapest meleg gyógyforrásai (Thermal springs of Budapest). — Budapesti Központi Gyógy- és Üdülőhelyi Bizottság Rheuma és Fürdőkutató Intézet, Budapest, 252 p. (in Hungarian.
Pécsi, M. 1959: A magyarországi Duna-völgy kialakulása és felszínalaktana (Formation and Geomorphology of the Danube Valley). — Akadémiai Kiadó, Budapest, 346 p. (in Hungarian with German summary)
Pécsi, M. 1996: Geomorphological regions of Hungary. — Geography Institute of Hungarian Academy of Sciences, Budapest, 121 p.
Raincsák-Kosáry, Zs. 1985: Budapest Építésföldtani Térképsorozata (Budapest Engineering Geology Map Series). — Manuscript, Hungarian Mining and Geological Office. (in Hungarian.
Royden, L.H., F. Horváth (Eds) 1988: The Pannonian basin — a study in basin evolution. — Amer. Assoc. Petrol. Geol. Memoir, 45, Tulsa, 394 p.
Ruszkiczay-Rüdiger, Zs., T. Dunai, G. Bada, L. Fodor, E. Horváth 2005: Middle to late Pleistocene uplift rate of the Hungarian Mountain Range at the Danube Bend (Pannonian Basin) using in situ produced 3He. — Tectonophysics, 410, pp. 173–187.
Schillereff, H.S. 2008: Using hydrogeologic data for geoexhange potential mapping, City of Whitehorse, Yukon. — 61st Canadian Geotechnical Conference and 9th Joint CGS/IAH–CNC Groundwater Conference, Edmonton.
Tóth, L., P. Mónus, T. Zsíros, M. Kiszely 2002: Seismicity in the Pannonian Region — earthquake data. — In: Cloetingh, S., F. Horváth, G. Bada, A. Lankreijer (Eds): Neotectonics and Surface Processes: the Pannonian Basin and Alpine/Carpathian System.EGU Stephan Mueller Special Publication Series, 3, pp. 9–28.
Zsigmondy, V. (1878): A városligeti artézi kút Budapesten (The artesian well of Városliget, Budapest). — Légrády testvérek, Budapest, 86 p. (in Hungarian)