View More View Less
  • 1 Eötvös Loránd University, Budapest, Hungary
Open access

Budapest is famous for its thermal springs and spas and outstanding thermal water resources. In the 21st century renewable energy utilization — including the use of geothermal energy — became the focus of interest. Improving the use of the different forms of geothermal energy requires the assessment of their possibilities. The potential for deep geothermal doublet systems for direct heating in Budapest was evaluated based on the temperature conditions, the depth and reconnaissance of the carbonate reservoir. NW Buda is not appropriate for thermal water exploration. SW and SE Budapest have better temperature conditions but the lithology of the reservoir is uncertain. Beneath Pest the thermal water is well exploitable. It is obvious from the map of the region that the area is promising; however, due to the hydraulic continuity of the system, reinjection is desirable. Considering the reliability of the employed data the geothermal potential map is suitable only for general orientation and guidance.

The geothermal potential map for Groundwater-sourced Heat Pump Systems (GHPS; scale = 1:40,000) was assembled by evaluating the thickness and appearance of the gravel strata and water table, complemented by the sulfate content as an aggressive component of groundwater. The original geothermal potential map series can be used for the evaluation of potential sites in Budapest. It can be concluded that the Buda side of the Danube River is almost entirely unsuitable for shallow groundwater-based heat pump installations. The only areas under consideration are Óbuda and the riverbanks. On the Pest side, there is no gravel in the central part; the largest areas close to the river and in the immediate surroundings are uncertain, with patches of suitable and possible categories. The southern and eastern area of Pest is the most prospective for GHPS installation. The potential maps only consider natural parameters; however, installation may be strongly influenced by the urbanization and the city environment.

  • Agemar, T., J.A. Alten, K. Kühne, A.A. Maul, S. Pester, W. Wirth, R. Schulz 2007: Development of a Geothermal Information System for Germany. — Proceedings European Geothermal Congress, Unterhaching, Germany.

    • Search Google Scholar
    • Export Citation
  • Alföldi, L., L. Bélteky, T. Böcker, J. Horváth, K. Korim, P. Liebe, R. Rémi 1968: Budapest Hévizei (Thermal waters of Budapest). — VITUKI, Budapest, 365 p. (in Hungarian.

    • Search Google Scholar
    • Export Citation
  • Coolbaugh, M.F., G.L. Raines, L.A. Shevenell, D.L. Sawatzky, R. Bedell, B.T. Minor 2002: A geothermal GIS for Nevada: defining regional controls and favorable exploration terrains for extensional geothermal systems. — Geothermal Resources Council Transactions, 26, pp. 485490.

    • Search Google Scholar
    • Export Citation
  • Cullin, J.R., L. Xing, E. Lee, J.D. Spitler, D.E. Fisher 2012: Feasibility of foundation heat exchangers for residential ground source heat pump systems in the United States. — ASHRAE Transactions, 118, pp. 10391048.

    • Search Google Scholar
    • Export Citation
  • Csepregi, A. 2007: A karsztvíztermelés hatása a Dunántúli-középhegység vízháztartására (The effect of water withdrawal on the water balance of the Transdanubian Range). — In: Alföldi L., L. Kapolyi (Eds): Bányászati karsztvízszint süllyesztés a Dunántúli-középhegységben (Mining Dewatering in the Transdanubian Range). Geography Institute of Hungarian Academy of Sciences, 138, pp. 77112.(in Hungarian.

    • Search Google Scholar
    • Export Citation
  • Fülöp, J., V. Dank 1987: Magyarország kainozoikum elhagyásával készített földtani térképe (Geological map of Hungary with the omission of the Cenozoic). — Geological Institute of Hungary. (in Hungarian.

    • Search Google Scholar
    • Export Citation
  • Grenerczy, Gy., A. Kenyeres, I. Fejes 2000: Present crustal movement and strain distribution in Central Europe inferred from GPS measurements. — J. Geophys. Res., 105, pp. 2183521846.

    • Search Google Scholar
    • Export Citation
  • Haas, J. (Ed.) 2001: Geology of Hungary. — Eötvös University Press, Budapest, p. 317.

  • Haas, J., T. Budai, L. Csontos, L. Fodor, Gy. Konrád 2010: Magyarország Pre-Kainozoós medencealjzatának földtani térképe (Pre-Cenozoic geological map of Hungary), 1:500000. — Geological Institute of Hungary. (in Hungarian.

    • Search Google Scholar
    • Export Citation
  • Horváth, F., S. Cloetingh 1996: Stress-induced late stage subsidence anomalies in the Pannonian basin. — Tectonophysics, 266, pp. 287300.

    • Search Google Scholar
    • Export Citation
  • Horváth, F., B. Musitz, A. Balázs, A. Végh, A. Uhrin, A. Nádor, B. Koroknai, N. Pap, T. Tóth, G. Wórum 2015: Evolution of the Pannonian basin and its geothermal resources. — Geothermics, 53, pp. 328352.

    • Search Google Scholar
    • Export Citation
  • Kázmér, M., S. Kovács 1985: Permian-Paleogene paleogeography along the eastern part of the Insubric-Periadriatic lineament system: evidence for continental escaper of the Bakony-Drauzug unit. — Acta Geol. Hung., 28/1–2, pp. 7184.

    • Search Google Scholar
    • Export Citation
  • Kohl, T., N. Andenmatten-Berthoud, L. Rybach 2003: Geothermal resource mapping example from northern Switzerland. — Geothermics, 32, pp. 721732.

    • Search Google Scholar
    • Export Citation
  • Lenkey, L., P. Dövényi, F. Horváth, S. Cloething 2002: Geothermics of the Pannonian basin and its bearing on the neotectonics. — EGU Stephan Mueller Special Publication Series, 3, pp. 2940.

    • Search Google Scholar
    • Export Citation
  • Lorberer, Á. 1984: Budapest környezetének geotermikus térképe (Geothermal map of surroundings of Budapest), 1:100 000. — Manuscript, VITUKI. (in Hungarian.

    • Search Google Scholar
    • Export Citation
  • Lorberer, Á. 2002: A budapesti termálkarszt állapotértékelése (Budapest thermal karst status assessment). — Final report, VITUKI, pp. 145.(in Hungarian.

    • Search Google Scholar
    • Export Citation
  • Lorberer, Á. 2003: A Dunántúli-középhegység karsztvízszint térképe, ÉK-rész, 2003. 01. 01-i állapot (Karst water map of the Transdanubian Range NE at 01/01/2003), 1:200 000. — VITUKI, Budapest. (in Hungarian.

    • Search Google Scholar
    • Export Citation
  • Mádl-Szőnyi, J. 2014: Genesis and utilization of thermal flow in deep carbonate systems. — In: Stevanović, Z., N. Kresić N. (Eds): Characterization and Engineering of Karst Aquifers. Springer, in press.

    • Search Google Scholar
    • Export Citation
  • Nam, Y., R. Ooka 2011: Development of potential map for ground and groundwater heat pump systems and the application to Tokyo. — Energy and Buildings, 43/2–3, pp. 677685.

    • Search Google Scholar
    • Export Citation
  • Odenka, J., M.I. Rüsgen, I. Strober, K. Czurda 2007: GIS-supported mapping of shallow geothermal-potential of representative areas in south-western Germany: possibilities and limitations. — Renewable Energy, 32, pp. 21862200.

    • Search Google Scholar
    • Export Citation
  • Papp, F. 1942: Budapest meleg gyógyforrásai (Thermal springs of Budapest). — Budapesti Központi Gyógy- és Üdülőhelyi Bizottság Rheuma és Fürdőkutató Intézet, Budapest, 252 p. (in Hungarian.

    • Search Google Scholar
    • Export Citation
  • Pécsi, M. 1959: A magyarországi Duna-völgy kialakulása és felszínalaktana (Formation and Geomorphology of the Danube Valley). — Akadémiai Kiadó, Budapest, 346 p. (in Hungarian with German summary)

    • Search Google Scholar
    • Export Citation
  • Pécsi, M. 1996: Geomorphological regions of Hungary. — Geography Institute of Hungarian Academy of Sciences, Budapest, 121 p.

  • Raincsák-Kosáry, Zs. 1985: Budapest Építésföldtani Térképsorozata (Budapest Engineering Geology Map Series). — Manuscript, Hungarian Mining and Geological Office. (in Hungarian.

    • Search Google Scholar
    • Export Citation
  • Royden, L.H., F. Horváth (Eds) 1988: The Pannonian basin — a study in basin evolution. — Amer. Assoc. Petrol. Geol. Memoir, 45, Tulsa, 394 p.

    • Search Google Scholar
    • Export Citation
  • Ruszkiczay-Rüdiger, Zs., T. Dunai, G. Bada, L. Fodor, E. Horváth 2005: Middle to late Pleistocene uplift rate of the Hungarian Mountain Range at the Danube Bend (Pannonian Basin) using in situ produced 3He. — Tectonophysics, 410, pp. 173187.

    • Search Google Scholar
    • Export Citation
  • Schillereff, H.S. 2008: Using hydrogeologic data for geoexhange potential mapping, City of Whitehorse, Yukon. — 61st Canadian Geotechnical Conference and 9th Joint CGS/IAH–CNC Groundwater Conference, Edmonton.

    • Search Google Scholar
    • Export Citation
  • Tóth, L., P. Mónus, T. Zsíros, M. Kiszely 2002: Seismicity in the Pannonian Region — earthquake data. — In: Cloetingh, S., F. Horváth, G. Bada, A. Lankreijer (Eds): Neotectonics and Surface Processes: the Pannonian Basin and Alpine/Carpathian System.EGU Stephan Mueller Special Publication Series, 3, pp. 928.

    • Search Google Scholar
    • Export Citation
  • Zsigmondy, V. (1878): A városligeti artézi kút Budapesten (The artesian well of Városliget, Budapest). — Légrády testvérek, Budapest, 86 p. (in Hungarian)

    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: Attila DEMÉNY

Deputy Editor(s)-in-Chief: Béla RAUCSIK

Co-ordinating Editor(s): Gábor SCHMIEDL

Editorial Board

  • Zsolt BENKÓ (Geochemistry, Ar dating; Institute for Nuclear Research, Debrecen)
  • Szabolcs HARANGI (Petrology, geochemistry, volcanology; Eötvös Loránd University, Budapest)
  • Anette GÖTZ (Sedimentology; Landesamt für Bergbau, Energie und Geologie, Hannover)
  • János HAAS (Regional Geology and Sedimentology; Eötvös Loránd University, Budapest)
  • István Gábor HATVANI (Geomathematics; Institute for Geological and Geochemical Research, Budapest)
  • Henry M. LIEBERMAN (Language Editor; Salt Lake City)
  • János KOVÁCS (Quaternary geology; University of Pécs)
  • Szilvia KÖVÉR (Sedimentology; Eötvös Loránd University, Budapest)
  • Tivadar M. TÓTH (Mineralogy; Petrology    University of Szeged)
  • Stephen J. MOJZSIS (Petrology, geochemistry and planetology; University of Colorado Boulder)
  • Norbert NÉMETH (Structural geology; University of Miskolc)
  • Attila ŐSI (Paleontology; Eötvös Loránd University, Budapest)
  • József PÁLFY (Fossils and Stratigraphic Records; Eötvös Loránd University, Budapest)
  • György POGÁCSÁS (Petroleum Geology; Eötvös Loránd University, Budapest)
  • Krisztina SEBE (Tectonics, sedimentology, geomorphology University of Pécs)
  • Ioan SEGHEDY (Petrology and geochemistry; Institute of Geodynamics, Bucharest)
  • Lóránd SILYE (Paleontology; Babeș-Bolyai University, Cluj-Napoca)
  • Ákos TÖRÖK (Applied and Environmental Earth Sciences; Budapest University of Technology and Economics, Budapest)
  • Norbert ZAJZON (Petrology and geochemistry; University of Miskolc)
  • Ferenc MOLNÁR (ore geology, geochemistry, geochronology, archaeometry; Geological Survey of Finland, Espoo)

Advisory Board

Due to the changes in editorial functions, the Advisory Board has been terminated. The participation of former Advisory Board members is highly appreciated and gratefully thanked.

CENTRAL EUROPEAN GEOLOGY
Institute for Geochemical Research
Hungarian Academy of Sciences
Address: Budaörsi út 45. H-1112 Budapest, Hungary
Phone: (06 1) 309 2681
Phone/fax: (06 1) 319 3137
E-mail: demeny@geochem.hu

Indexing and Abstracting Services:

  • Chemical Abstracts
  • Elsevier Geo Abstracts
  • GEOBASE
  • SCOPUS
  • Referativnyi Zhurnal
  • Zoological Abstracts

 

2020  
Scimago
H-index
24
Scimago
Journal Rank
0,253
Scimago
Quartile Score
Geology Q3
Scopus
Cite Score
59/33=1,8
Scopus
Cite Score Rank
Geology 134/251 (Q3)
Scopus
SNIP
0,679
Scopus
Cites
146
Scopus
Documents
4
Days from submission to acceptance 247
Days from acceptance to publication 229
Acceptance
Rate
36%

 

2019  
Scimago
H-index
22
Scimago
Journal Rank
0,313
Scimago
Quartile Score
Geology Q3
Scopus
Cite Score
43/33=1,3
Scopus
Cite Score Rank
Geology 151/235(Q3)
Scopus
SNIP
0,593
Scopus
Cites
106
Scopus
Documents
7
Acceptance
Rate
47%

 

Central European Geology
Publication Model Online only Gold Open Access
Submission Fee none
Article Processing Charge none
Regional discounts on country of the funding agency  
Further Discounts  
Subscription Information Gold Open Access
Purchase per Title  

Central European Geology
Language English
Size Vol 1-63: B5
Vol 64- : A4
Year of
Foundation
2007 (1952)
Publication
Programme
2021 Volume 64
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1788-2281 (Print)
ISSN 1789-3348 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 5 3
Mar 2021 0 6 6
Apr 2021 0 6 9
May 2021 0 5 5
Jun 2021 0 6 2
Jul 2021 0 2 0
Aug 2021 0 0 0