Authors:
Marco PolaUniversità degli Studi di Padova, Padova, Italy

Search for other papers by Marco Pola in
Current site
Google Scholar
PubMed
Close
,
Paolo FabbriUniversità degli Studi di Padova, Padova, Italy

Search for other papers by Paolo Fabbri in
Current site
Google Scholar
PubMed
Close
,
Leonardo PiccininiUniversità degli Studi di Padova, Padova, Italy

Search for other papers by Leonardo Piccinini in
Current site
Google Scholar
PubMed
Close
, and
Dario ZampieriUniversità degli Studi di Padova, Padova, Italy

Search for other papers by Dario Zampieri in
Current site
Google Scholar
PubMed
Close
View More View Less
Open access

The Euganean Geothermal Field (EGF) is the most important thermal field in northern Italy. It is located in the alluvial plain of the Veneto Region where approximately 17*106 m3 of thermal water with temperatures of 60–86 °C are exploited annually. A regional-scale conceptual model of the Euganean Geothermal System is proposed in this paper using the available hydrogeologic, geochemical and structural data for both the EGF and central Veneto. The thermal water is of meteoric origin and infiltrates approximately 80 km to the north of the EGF in the Veneto Prealps. The water flows to the south in a Mesozoic limestone and dolomite reservoir reaching a depth of approximately 3,000 m and a temperature of approximately 100 °C due to the normal geothermal gradient. The regional Schio-Vicenza fault system and its highly permeable damage zone act as a preferential path for fluid migration in the subsurface. In the EGF area, a geologic structure formed by the interaction of different segments of the fault system increases the local fracturing and the permeability favoring the upwelling of the thermal waters. Numerical simulations are performed to validate the proposed conceptual model using a finite difference code that simulates thermal energy transport in hydrothermal systems. A specific configuration of thermal conductivity and permeability for the formations involved in the thermal system is obtained after calibration of these parameters. This set of parameters is verified in a long-term simulation (55,100 years) obtaining a 60–70 °C plume in the EGF area. The modeled temperatures approach the measured temperatures of 60–86 °C, demonstrating that this conceptual model can be realistically simulated.

  • Antonelli R. , P. Fabbri 1988: Analysis and comparison of some values of transmissivity, permeability and storage from the Euganean Thermal Basin. — In: 21st IAH Congress Karst Hydrogeology and Karst Environment Protection Abstract Book, Giulin, Cina, pp. 707718.

    • Search Google Scholar
    • Export Citation
  • Antonelli, R., G. Barbieri, G.V. Dal Piaz, A. Dal Prá, V. De Zanche, P. Grandesso, P. Mietto, R. Sedea, A. Zanferrari 1990: Carta geologica del Veneto 1:250.000 e relative Note Illustrative. — S.E.L.C.A., Firenze.

    • Search Google Scholar
    • Export Citation
  • Antonelli, R., E. Callegari, P. Fabbri, R. Sedea 1993: Recenti contributi alla conoscenza dell’idrostruttura del bacino termale euganeo (Padova). — GEAM, 79, pp. 4955.

    • Search Google Scholar
    • Export Citation
  • Antonelli R. , A. Baglioni, P. Fabbri, P. Grandesso, V. Iliceto, L. Scaramuzza, R. Sedea 1994: Applicazioni del “gamma ray log” eseguito in un pozzo a carotaggio continuo nell’area termale Euganea (Padova). — Geologica Romana, 30, 217226.

    • Search Google Scholar
    • Export Citation
  • Aurighi, M., A. Cisotto, A. Dal Prá, M. Janza, R. Mariani, M. Nordico, C. Soccorso, D. Steccanella, G. Barbieri 2004: Carta idrogeologica dell’Altopiano dei Sette Comuni. — Regione Veneto, Giunta Regionale, 31 p.

    • Search Google Scholar
    • Export Citation
  • Baietto, A., P. Cadoppi, G. Martinotti, P. Perello, P. Perrochet, F.D. Vuataz 2008: Assessment of thermal circulation in strike-slip fault systems: the Terme di Valdieri case. — Geological Society of London Special Publications, 299, pp. 317339.

    • Search Google Scholar
    • Export Citation
  • Bear, J. 1972: Dynamics of fluids in porous media. — American Elseviers Publishing Company, New York, 764 p.

  • Bischoff, J.L., R. Julia, W.C. Shanks, R.J. Rosenauer 1994: Karstification without acid; bedrock dissolution by gypsum-driven dedolomitization. — Geology, 22, pp. 995998.

    • Search Google Scholar
    • Export Citation
  • Boaretto, E., I. Carmi, P. Fabbri, J. Heinemeier, S. Sartori, A.E. Sveinbjornsdottir, Y. Yechieli 2003: Radiocarbon in thermal and fresh groundwater in Veneto Region, Northern Italy. — Proceedings of the XVIIIth International Radiocarbon Conference.

    • Search Google Scholar
    • Export Citation
  • Burrato, P., M. Poli, P. Vannoli, A. Zanferrari, R. Basili, F. Galadini 2008: Sources of Mw 5+ earthquakes in northeastern Italy and western Slovenia: An updated view based on geological and seismological evidence. — Tectonophysics, 453, pp. 157176.

    • Search Google Scholar
    • Export Citation
  • Curewitz, D., J.A. Karson 1997: Structural setting of hydrothermal outflow: Fracture permeability maintained by fault propagation and interaction. — Journal of Volcanology and Geothermal Research, 79, pp. 149168.

    • Search Google Scholar
    • Export Citation
  • D’Agostino, N., D. Cheloni, S. Mantenuto, G. Selvaggi, A. Michelini, D. Zuliani 2005: Strain accumulation in the southern Alps (NE Italy) and deformation at the northeastern boundary of Adria observed by CGPS measurements. — Geophysical Research Letters, 32, 19 p.

    • Search Google Scholar
    • Export Citation
  • Della Vedova, B. , S. Bellani, G. Pellis, P. Squarci 2001: Deep temperatures and subsurface heat flow distribution. — In: Vai, G.B., I.P. Martini (Eds): Anatomy of an Orogen: the Apennines and the Adjacent Mediterranean Basin, pp. 6576.

    • Search Google Scholar
    • Export Citation
  • Domenico, P.A., W. Schwartz 1998: Physical and Chemical Hydrogeology, Second Edition. — Wiley, New York, 824 p.

  • Fabbri, P. 1997: Transmissivity in the Euganean Geothermal Basin: a geostatistical analysis. — Groundwater, 35, pp. 881887.

  • Fabbri, P. 2001: Probabilistic assessment of temperature in the Euganean geothermal area (Veneto region, NE Italy). — Mathematical Geology, 33, pp. 745760.

    • Search Google Scholar
    • Export Citation
  • Fabbri P. , G. Matteotti 1989: Analisi su alcune metodologie di calcolo della permeabilità nell’acquifero Euganeo. — Idrotecnica, 3, pp. 107114.

    • Search Google Scholar
    • Export Citation
  • Fabbri P. , G. Matteotti 1992: Interpretazione di prove di pompaggio in pozzo: utilizzo combinato dei metodi della curva tipo e della derivata della pressione. — Idrotecnica, 3, pp. 119126.

    • Search Google Scholar
    • Export Citation
  • Fabbri, P., S. Trevisani 2005: Spatial distribution of temperature in the geothermal Euganean field (NE, Italy): a simulated annealing approach. — Geothermics, 34, pp. 617631.

    • Search Google Scholar
    • Export Citation
  • Fabbri, P., C. Soccorso 2007: La risposta dei livelli potenziometrici allo sfruttamento del campo geotermico Euganeo (PD). — Giornale di Geologia Applicata, 5, pp. 115124.

    • Search Google Scholar
    • Export Citation
  • Fantoni, R., D. Cattelani, S. Merlini, S. Rogledi, S. Venturini 2002: La registrazione degli eventi deformativi cenozoici nell’avampaese Veneto-Friuliano. — Memorie della Società Geologica Italiana, 57, pp. 301313.

    • Search Google Scholar
    • Export Citation
  • Faulkner, D.R., C.A.L. Jackson, R.J. Lunn, R.W. Schlische, Z.K. Shipton, C.A.J. Wibberley, M.O. Withjack 2010: A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. — Journal of Structural Geology, 32, pp. 15571575.

    • Search Google Scholar
    • Export Citation
  • Ferri, F., R. Ventura, F. Coren, C. Zanolla 2005: Gravity Map of Italy and Surroundings Seas 1:1250000. — APAT Agenzia per la protezione dell’ambiente e per i servizi tecnici. Dipartimento Difesa del Suolo, 15 p.

    • Search Google Scholar
    • Export Citation
  • Ferrill, D.A., A.P. Morris 2001: Displacement gradient and deformation in normal fault systems. — Journal of Structural Geology, 23, pp. 619638.

    • Search Google Scholar
    • Export Citation
  • Garzonio, C.A., L. Piccinini, A. Gargini 2014: Groundwater Modeling of Fractured Aquifers in Mines: The Case Study of Gavorrano (Tuscany, Italy). — Rock Mechanics and Rock Engineering, 47/3, pp. 905921.

    • Search Google Scholar
    • Export Citation
  • Gherardi, F., C. Panichi, S. Caliro, G. Magro, M. Pennisi 2000: Water and gas geochemistry of the Euganean and Berician thermal district (Italy). — Applied Geochemistry, 15, pp. 455474.

    • Search Google Scholar
    • Export Citation
  • Goldscheider, N., J. Mádl-Szőnyi, A. Erőss, E. Schill 2010: Review: thermal water resources in carbonate rock aquifers. — Hydrogeology Journal, 18, pp. 13031318.

    • Search Google Scholar
    • Export Citation
  • Hurwitz, S., K.L. Kipp, S. Ingebritsen, M. Reid 2003: Groundwater flow, heat transport, and water table position within volcanic edifices: Implications for volcanic processes in the Cascade Range. — Journal of Geophysical Research: Solid Earth, 108/12, 19 p.

    • Search Google Scholar
    • Export Citation
  • Ingebritsen, S.E., S.A. Rojstaczer 1996: Geyser periodicity and the response of geysers to deformation. — Journal of Geophysical Research, 101, pp. 2189121905.

    • Search Google Scholar
    • Export Citation
  • Kipp, K.L., P.A. Hsieh, S.R. Charlton 2008: Guide to the revised groundwater flow and heat transport simulator. — HYDROTHERM-3. U.S.G.S. Techniques & Methods, 6–A25, 160 p.

    • Search Google Scholar
    • Export Citation
  • Long, J.J., J. Imber 2011: Geological controls on fault relay zone scaling. — Journal of Structural Geology, 33, pp. 17901800.

  • Long, J.C.S., J.S. Remer, C.R. Wilson, P.A. Witherspoon 1982: Porous media equivalents for networks of discontinuous fractures. — Water Resources Research, 18, pp. 645658.

    • Search Google Scholar
    • Export Citation
  • Masetti, D., R. Fantoni, R. Romano, D. Sartorio, E. Trevisani 2012: Tectonostratigraphic evolution of the Jurassic extensional basins of the eastern southern Alps and Adriatic foreland based on an integrated study of surface and subsurface data. — AAPG Bulletin, 96, pp. 20652089.

    • Search Google Scholar
    • Export Citation
  • Norton, D., C. Panichi 1978: Determination of the sources and circulation paths of thermal fluids: the Abano region, northern Italy. — Geochimica et Cosmochimica Acta, 42, pp. 12831294.

    • Search Google Scholar
    • Export Citation
  • Pasquale, V., M. Verdoya 1990: Geothermal regime of the Po basin, Italy. — Società Geologica Italiana, Volume Speciale, 1, pp. 135143.

    • Search Google Scholar
    • Export Citation
  • Peacock, D.C.P., D.J. Sanderson 1994: Geometry and development of relay ramps in normal fault systems. — AAPG Bulletin, 78, pp. 147165.

    • Search Google Scholar
    • Export Citation
  • Peacock, D.C.P., D.J. Sanderson 1995: Strike-slip relay ramps. — Journal of Structural Geology, 17, pp. 13511360.

  • Perello, P., M. Marini, G. Marinotti, J. Hunziker 2001: The thermal circuit of The Argentera Massif (Western Alps, Italy). An example of low-enthalpy geothermal resources controlled by Neogene alpine tectonics. — Eclogae Geologicae Helvetiae, 94, pp. 7494.

    • Search Google Scholar
    • Export Citation
  • Piccoli, G., A. Dal Prá, R. Sedea, R. Bellati, E. Di Lallo, R. Cataldi, P. Baldi, G.C. Ferrara 1973: Contributo alla conoscenza del sistema idrotermale Euganeo-Berico. — Atti Accademia Nazionale Lincei, 9, pp. 103131.

    • Search Google Scholar
    • Export Citation
  • Pola M. , P. Fabbri, A. Gandin, M. Soligo, P. Tuccimei, R. Deiana, D. Zampieri 2011: The Montirone travertine mound: a multidisciplinary approach: Implication for the Euganean Geothermal Field. — Rendiconti online della Soc. Geol. It., 16, pp. 2829.

    • Search Google Scholar
    • Export Citation
  • Pola M. , P. Fabbri, L. Piccinini, D. Zampieri 2013: A new hydrothermal conceptual and numerical model of the Euganean Geothermal system, NE Italy. — Rendiconti online della Soc. Geol. It., 24, pp. 251253.

    • Search Google Scholar
    • Export Citation
  • Pola, M., A. Gandin, P. Tuccimei, M. Soligo, R. Deiana, P. Fabbri, D. Zampieri 2014a: A multidisciplinary approach to understanding carbonate deposition under tectonically controlled hydrothermal circulation: a case study from a recent travertine mound in the Euganean Hydrothermal System, northern Italy. — Sedimentology, 61, pp. 172199.

    • Search Google Scholar
    • Export Citation
  • Pola, M., A. Ricciato, R. Fantoni, P. Fabbri, D. Zampieri 2014b: Architecture of the western margin of the North Adriatic foreland: the Schio-Vicenza fault system. — Italian Journal of Geoscience, 133, pp. 223234.

    • Search Google Scholar
    • Export Citation
  • Pola M. , P. Fabbri, L. Piccinini, E. Marcolongo, A. Rosignoli, D. Zampieri, A. Roghel, S. Onisto, E. Zampieri 2015: Anthropic impact on thermal aquifer: the case study of the Euganean Geothermal Field (NE Italy). — Rendiconti online della Soc. Geol. It., 35, pp. 240243.

    • Search Google Scholar
    • Export Citation
  • Rotevatn, A., H. Fossen, J. Hesthammer, T.E. Aas, J.A. Howell 2007: Are relay ramps conduits for fluid flow? Structural analysis of a relay ramp in Arches National Park, Utah. — Geological Society of London Special Publications, 270, pp. 5571.

    • Search Google Scholar
    • Export Citation
  • Sartori, S., E. Boaretto, P. Fabbri, A.E. Sveinbjornsdottir, J. Heinemeier 1997: 14C content of Euganean geothermal waters (Veneto, Italy). — In: Proceedings of the XVIth International Radiocarbon Conference, Groningen.

    • Search Google Scholar
    • Export Citation
  • Scanlon, B.R., R.E. Mace, M.E. Barrett, B. Smith 2003: Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. — Journal of Hydrology, 276, pp. 137158.

    • Search Google Scholar
    • Export Citation
  • Scharli, U., L. Rybach 2001: Determination of the specific heat capacity on rock fragments. — Geothermics, 30, pp. 93110.

  • Trudgill, B., J. Cartwright 1994: Relay-ramp forms and normal-fault linkages, Canyonlands National Park, Utah. — Geological Society of America Bulletin, 106, pp. 11431157.

    • Search Google Scholar
    • Export Citation
  • Vosteen, H., R. Schellschmidt 2003: Influence of temperature on the thermal conductivity and thermal diffusivity for different types of rock. — Physics and Chemistry of the Earth, 28, pp. 499509.

    • Search Google Scholar
    • Export Citation
  • Zampieri D. 1995: Tertiary extension in the southern Trento Platform, Southern Alps, Italy. — Tectonics, 14, pp. 645657.

  • Zampieri D. , P. Fabbri, M. Pola 2009: Structural constraints to the Euganean Geothermal Field (NE Italy). — Rendiconti online della Soc. Geol. It., 5, pp. 238240.

    • Search Google Scholar
    • Export Citation
  • Zampieri D. , M. Pola, P. Fabbri 2010: The fissure ridge of Abano Terme (Padova). — Rendiconti online della Soc. Geol. It., 11, pp. 364365

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: Attila DEMÉNY

Deputy Editor(s)-in-Chief: Béla RAUCSIK

Co-ordinating Editor(s): Gábor SCHMIEDL

Editorial Board

  • Zsolt BENKÓ (Geochemistry, Ar dating; Institute for Nuclear Research, Debrecen)
  • Szabolcs HARANGI (Petrology, geochemistry, volcanology; Eötvös Loránd University, Budapest)
  • Anette GÖTZ (Sedimentology; Landesamt für Bergbau, Energie und Geologie, Hannover)
  • János HAAS (Regional Geology and Sedimentology; Eötvös Loránd University, Budapest)
  • István Gábor HATVANI (Geomathematics; Institute for Geological and Geochemical Research, Budapest)
  • Henry M. LIEBERMAN (Language Editor; Salt Lake City)
  • János KOVÁCS (Quaternary geology; University of Pécs)
  • Szilvia KÖVÉR (Sedimentology; Eötvös Loránd University, Budapest)
  • Tivadar M. TÓTH (Mineralogy; Petrology    University of Szeged)
  • Stephen J. MOJZSIS (Petrology, geochemistry and planetology; University of Colorado Boulder)
  • Norbert NÉMETH (Structural geology; University of Miskolc)
  • Attila ŐSI (Paleontology; Eötvös Loránd University, Budapest)
  • József PÁLFY (Fossils and Stratigraphic Records; Eötvös Loránd University, Budapest)
  • György POGÁCSÁS (Petroleum Geology; Eötvös Loránd University, Budapest)
  • Krisztina SEBE (Tectonics, sedimentology, geomorphology University of Pécs)
  • Ioan SEGHEDY (Petrology and geochemistry; Institute of Geodynamics, Bucharest)
  • Lóránd SILYE (Paleontology; Babeș-Bolyai University, Cluj-Napoca)
  • Ákos TÖRÖK (Applied and Environmental Earth Sciences; Budapest University of Technology and Economics, Budapest)
  • Norbert ZAJZON (Petrology and geochemistry; University of Miskolc)
  • Ferenc MOLNÁR (ore geology, geochemistry, geochronology, archaeometry; Geological Survey of Finland, Espoo)

Advisory Board

Due to the changes in editorial functions, the Advisory Board has been terminated. The participation of former Advisory Board members is highly appreciated and gratefully thanked.

CENTRAL EUROPEAN GEOLOGY
Institute for Geochemical Research
Hungarian Academy of Sciences
Address: Budaörsi út 45. H-1112 Budapest, Hungary
Phone: (06 1) 309 2681
Phone/fax: (06 1) 319 3137
E-mail: demeny@geochem.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • Chemical Abstracts
  • Elsevier Geo Abstracts
  • GEOBASE
  • SCOPUS
  • Referativnyi Zhurnal
  • Zoological Abstracts

 

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
25
Scimago
Journal Rank
0,172
Scimago Quartile Score

Geology (Q4)

Scopus  
Scopus
Cite Score
1
Scopus
CIte Score Rank

Geology 208/273 (Q4)

Scopus
SNIP
0,597

2020  
Scimago
H-index
24
Scimago
Journal Rank
0,253
Scimago
Quartile Score
Geology Q3
Scopus
Cite Score
59/33=1,8
Scopus
Cite Score Rank
Geology 134/251 (Q3)
Scopus
SNIP
0,679
Scopus
Cites
146
Scopus
Documents
4
Days from submission to acceptance 247
Days from acceptance to publication 229
Acceptance
Rate
36%

 

2019  
Scimago
H-index
22
Scimago
Journal Rank
0,313
Scimago
Quartile Score
Geology Q3
Scopus
Cite Score
43/33=1,3
Scopus
Cite Score Rank
Geology 151/235(Q3)
Scopus
SNIP
0,593
Scopus
Cites
106
Scopus
Documents
7
Acceptance
Rate
47%

 

Central European Geology
Publication Model Online only Gold Open Access
Submission Fee none
Article Processing Charge none
Regional discounts on country of the funding agency  
Further Discounts  
Subscription Information Gold Open Access
Purchase per Title  

Central European Geology
Language English
Size Vol 1-63: B5
Vol 64- : A4
Year of
Foundation
2007 (1952)
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1788-2281 (Print)
ISSN 1789-3348 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2022 0 94 22
Jan 2023 0 70 19
Feb 2023 0 48 19
Mar 2023 0 68 16
Apr 2023 0 52 22
May 2023 0 24 9
Jun 2023 0 0 0