View More View Less
  • 1 Università “La Sapienza”, Rome, Italy
  • 2 Syndial — Eni, San Donato Milanese, Italy
  • 3 Ambiente SC Ingegneria e Laboratori, Rome, Italy
Open access

Although the Acque Albule Basin has been studied since the middle of the 19th century, a comprehensive geologic conceptual model of the area has not yet been developed. The natural setting has been heavily modified by anthropic activities. Rapid evolution during the last 25 years has caused many interferences, which have led to a drastic increase of the hazards and linked risks, mainly related to water resource overexploitation and subsidence.

The implementation of an exhaustive framework has become mandatory for environmental and management purposes. Starting from a critical review of previous studies, hydrogeologic and hydrogeochemical surveys and related numerical modeling have been carried out in order to achieve a quantitative understanding of the active phenomena and processes.

Several hydrogeologic issues have been addressed concerning aquifer recharge areas and the different flowpaths of groundwater in respect to their division into a shallow and a deep circuit. Account has been taken of the groundwater chemistry as a function of water—rock interactions and mixing processes with uprising fluids. Different scenarios of groundwater flow in the Acque Albule aquifer have been built, using previously available piezometric measurements and the hydrodynamic parameters determined by in situ tests. These results led to the formulation of an updated hydrogeologic conceptual model to be further implemented, in which past, present and future anthropic instances and the potential of natural resources of the area have been included and taken into account. A sound conceptual model must rely on the design and development of a logical geo-database in which information is stored, updated and processed. This operational framework can result in a useful tool for land management, surveys planning and design, hazard and risk evaluation, identification of best practices and economic development of the area.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abe H. , C. Tang, A. Kondoh 2014: Effect of urban aquifer exploitation on subsurface temperature and water quality. — Groundwater, 52, pp. 186194.

    • Search Google Scholar
    • Export Citation
  • Billi, A., A. Valle, M. Brilli, C. Faccenna, R. Funiciello 2006: Fracture-controlled fluid circulation and dissolutional weathering in sinkhole-prone carbonate rocks from central Italy. — Journal of Structural Geology, 29, pp. 385395.

    • Search Google Scholar
    • Export Citation
  • Boni, C., P. Bono, G. Capelli 1986: Schema idrogeologico dell’Italia Centrale. — Memorie Società Geologica Italiana, 35, pp. 9911012.

    • Search Google Scholar
    • Export Citation
  • Brunetti, E., J.P. Jones, M. Petitta, D.L. Rudolph 2013: Assessing the impact of large-scale dewatering on fault-controlled aquifer systems: a case study in the Acque Albule basin (Tivoli, central Italy). — Hydrogeology Journal, 21, pp. 401423.

    • Search Google Scholar
    • Export Citation
  • Capelli, G., R. Mazza, C. Gazzetti 2005: Strumenti e strategie per la tutela e l’uso compatibile della risorsa idrica nel Lazio. Gli acquiferi vulcanici. — Pitagora, Bologna, 191 p.

    • Search Google Scholar
    • Export Citation
  • Carucci, V., M. Petitta, R. Aravena 2012: Interaction between shallow and deep aquifers in the Tivoli Plain (Central Italy) enhanced by groundwater extraction: a multi-isotope approach and geochemical modeling. — Applied Geochemistry, 27, pp. 266280.

    • Search Google Scholar
    • Export Citation
  • Chiodini, G., A. Baldini, F. Barbieri, M.L. Carapezza, C. Cardellini, F. Frondini, D. Granieri, M. Ranaldi 2007: Carbon dioxide degassing at Latera caldera (Italy): evidence of geothermal reservoir and evaluation of its potential energy. — Journal of Geophysical Research, 112, pp. 117.

    • Search Google Scholar
    • Export Citation
  • D’Amore, F., C. Panichi 1980: Evaluation of deep temperatures of hydrothermal systems by a new gas geothermometer. — Geochimica et Cosmochimica Acta, 44, pp. 549556.

    • Search Google Scholar
    • Export Citation
  • De Filippis, L., C. Faccenna, A. Billi, E. Anzalone, M. Brilli, M. Soligo, P. Tuccimei 2013: Plateau versus fissure ridge travertines from Quaternary geothermal springs of Italy and Turkey: Interactions and feedbacks between fluid discharge, paleoclimate, and tectonics. — Earth-Science Reviews, 123, pp. 3552.

    • Search Google Scholar
    • Export Citation
  • De Rita, D., C. Faccenna, R. Funiciello, C. Rosa 1995: Structural and geological evolution of the Colli Albani volcanic district. — In: Trigila, R. (Ed.): The Volcano of the Alban Hills. Tipografia SGS, Rome, pp. 3371.

    • Export Citation
  • Doglioni, C., E. Carminati, M. Cuffaro, D. Scrocca 2007: Subduction kinematics and dynamic constraints. — Earth-Science Reviews, 83, pp. 125175.

    • Search Google Scholar
    • Export Citation
  • DHI-WASY 2009: FEFLOW 5.4. Finite element subsurface flow and transport simulation system. User’s manual — DHIWASY, Berlin.

    • Export Citation
  • Faccenna, C., R. Funiciello, M. Mattei 1994: Late Pleistocene N–S shear zones along the Latium Tyrrhenian margin: structural characters and volcanological implications. — Bollettino di Geofisica Teorica e Applicata 36, pp. 141144.

    • Search Google Scholar
    • Export Citation
  • Faccenna, C., M. Soligo, A. Billi, L. De Filippis, R. Funiciello, C. Rossetti, P. Tuccimei 2008: Late Pleistocene cycles of travertine deposition and erosion, Tivoli, Central Italy: possible influence of climate changes and fault-related deformation. — Global Planetary Change, 63, pp. 299308.

    • Search Google Scholar
    • Export Citation
  • Florindo, F, F. Marra, P. Montone, M. Pirro, E. Boschi 2004: Palaeomagnetic results from an archaeological site near Rome (Italy): new insights for tectonic rotation during the last 0.5 Myr. — Annals of Geophysics, 47/5, pp. 16651673.

    • Search Google Scholar
    • Export Citation
  • Fontes, J.Ch., G.M. Zuppi 1976: Isotope and water chemistry in sulfide-bearing springs of central Italy. — In: Interpretation of Environmental Isotope and Hydrochemical Data in Groundwater Hydrology. IAEA editor, Vienna, pp. 143158.

    • Search Google Scholar
    • Export Citation
  • Foster, S.S.D., K. Vairavamoorthy 2013: Urban Groundwater — Policies and Institutions for Integrated Management. — www.gwptoolbox.org

    • Export Citation
  • Foster, S.S.D., A.R. Lawrence, B.L. Morris 1998: Groundwater in urban development: assessing management needs and formulating policy strategies. — World Bank Technical Paper, 390, 55 p.

    • Search Google Scholar
    • Export Citation
  • Foster, S.S.D., R. Hirata, K.W.F. Howard 2011: Groundwater use in developing cities: policy issues arising from current trends. — Hydrogeology Journal, 19, pp. 271274.

    • Search Google Scholar
    • Export Citation
  • Fournier, R.O., J.J. Rowe 1966: Estimation of underground temperatures from silica content of waters from hot springs and wet steam wells. — American Journal of Science, 264, pp. 685697.

    • Search Google Scholar
    • Export Citation
  • Galloway, D.L., T.J. Burbey 2011: Review: Regional land subsidence accompanying groundwater extraction. — Hydrogeology Journal, 19, pp. 14591486.

    • Search Google Scholar
    • Export Citation
  • Gasparini, C., R. Di Maro, N. Pagliuca, M. Pirro, A. Marchetti 2002: Recent seismicity of the ‘‘Acque Albule’’ travertine basin. — Annals of Geophysics, 45, pp. 537550.

    • Search Google Scholar
    • Export Citation
  • Hardie, L.A. 1967: The gypsum-anhydrite equilibrium at one atmosphere pressure. — The American Mineralogist Journal, 52, pp. 171200.

    • Search Google Scholar
    • Export Citation
  • Hanshaw, B.B., J.D. Bredehoeft 1968: On the maintenance of anomalous fluid pressures: II. Source layer at depth. — Geological Society of America Bullettin, 79/9, pp. 11071122.

    • Search Google Scholar
    • Export Citation
  • Howard, K.W.F. 2007: Urban groundwater: meeting the challenge. — IAH Selected Paper Series 8, Taylor & Francis, Oxford, 307 p.

  • Jenerette, G.D., L. Larsen 2006: A global perspective on changing sustainable urban water supplies. — Global Planetary Change, 50/3–4, pp. 202211.

    • Search Google Scholar
    • Export Citation
  • Jowett, C.E. , L.M. Cathles, B.W. Davis 1993: Predicting depths of gypsum dehydration in evaporitic sedimentary basins. — AAPG Bullettin, 77, pp. 402413.

    • Search Google Scholar
    • Export Citation
  • Julio-Miranda, P., A.J. Ortiz-Rodriguez, A.G. Palacio-Aponte, R. Lopez-Doncel, R. Barboza-Gudino 2012: Damage assessment associated with land subsidence in the San Luis Potosi-Soledad de Graciano Sanchez metropolitan area, Mexico, elements for risk management. — Natural Hazards, 64, pp. 751765.

    • Search Google Scholar
    • Export Citation
  • La Vigna, F., R. Rossetto, R. Mazza, G. Capelli 2011: Can we calibrate a complex groundwater model just by running an automatic calibration code? A case study from Italy: The Acque Albule Plain model (Rome). — IAHS–AISH Publication, 341, pp. 5156.

    • Search Google Scholar
    • Export Citation
  • La Vigna, F., V. Carucci, I. Mariani, L. Minelli, F. Pascale, M. Mattei, R. Mazza, M. Tallini 2012: Intermediate field hydrogeological response induced by L’Aquila earthquake: the Acque Albule hydrothermal system (Central Italy). — Italian Journal of Geosciences, 131, pp. 475485.

    • Search Google Scholar
    • Export Citation
  • La Vigna, F., R. Mazza, G. Capelli 2013: Detecting the flow relationships between deep and shallow aquifers in an exploited groundwater system, using long-term monitoring data and quantitative hydrogeology: the Acque Albule basin case (Rome, Italy). — Hydrological Processes, 27/2, pp. 31593173.

    • Search Google Scholar
    • Export Citation
  • Lombardi, L. 2005: Indagini geochimiche per determinare le cause dei dissesti agli edifici di Via Cesare Augusto ed aree limitrofe in località Bagni di Tivoli. — Contratto di Ricerca con la Regione Lazio, 5350 del 11/01/2005.

    • Search Google Scholar
    • Export Citation
  • Maiorani, A., R. Funiciello, M. Mattei, B. Turi 1992: Stable isotope geochemistry and structural elements of the Sabina region (Central Apennines, Italy). — Terra Nova, 4, pp. 484488.

    • Search Google Scholar
    • Export Citation
  • Malinverno, A., W.B.F. Ryan 1986: Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. — Tectonics, 5, pp. 227254.

    • Search Google Scholar
    • Export Citation
  • Mastrocicco, M., C. Sbarbati, N. Colombani, M. Petitta 2013: Efficiency verification of a horizontal flow barrier via flowmeter tests and multilevel sampling. — Hydrological Processes, 27/17, pp. 24142421.

    • Search Google Scholar
    • Export Citation
  • Minissale, A., D.M. Kerrick, G. Magro, M.T. Murrell, M. Paladini, S. Rihs, N.C. Sturchio, F. Tassi, O. Vaselli 2002: Geochemistry of Quaternary travertines in the region north of Rome (Italy): structural, hydrological and paleoclimatic implications. — Earth Planetary Science Letters, 203, pp. 709728.

    • Search Google Scholar
    • Export Citation
  • Paillet, F.L. 1998: Flow modeling and permeability estimation using borehole flow logs in heterogeneous fractured formations. — Water Resources Research, 34/5, pp. 9971010.

    • Search Google Scholar
    • Export Citation
  • Parkhurst, D.L., C.A.J. Appelo 1999: Users Guide to PHREEQC (Version 2) — A Computer program for Speciation, Batch Reaction, One-dimensional Transport and Inverse Geochemical Calculations. — U.S. Geological Survey, Denver, 326 p.

    • Search Google Scholar
    • Export Citation
  • Patacca, E., R. Sartori, P. Scandone 1992: Tyrrhenian basin and Apenninic arcs: kinematic relations since late Tortonian times. — Memorie della Società Geologica Italiana, 45, pp. 425451.

    • Search Google Scholar
    • Export Citation
  • Pentecost, A., P. Tortora 1989: Bagni di Tivoli, Lazio: a modern travertine depositing site and its associated microorganism. — Bollettino della Società Geologica Italiana, 108, pp. 315324.

    • Search Google Scholar
    • Export Citation
  • Petitta, M., V. Marinelli, E. Pacioni 2010: Il contributo delle indagini con heatpulse flowmeter alla valutazione delle componenti verticali del flusso in acquiferi fratturati e porosi. — Engineering Hydro Environmental Geology, 13, pp. 4150.

    • Search Google Scholar
    • Export Citation
  • Petitta, M., P. Primavera, P. Tuccimei, R. Aravena 2011: Interaction between deep and shallow groundwater systems in areas affected by Quaternary tectonics (Central Italy): a geochemical and isotope approach. — Environmental Earth Sciences, 63, pp. 1130.

    • Search Google Scholar
    • Export Citation
  • Plummer, L.N. 1992: Geochemical modeling of water-rock interaction: past, present, future. — In: Kharaka, Y.K., A.S. Maest (Eds): Water–Rock Interaction. Proceeding of 7th International Conference Balkema, Rotterdam, pp. 2333.

    • Search Google Scholar
    • Export Citation
  • Plummer, L.N., E.C. Prestemon, D.L. Parkhurst 1994: NETPATH: An Interactive Code (NETPATH) for Modeling NET geochemical Reactions Along a Flow PATH, Version 2.0. — U.S. Geological Survey, Reston, 231 p.

    • Search Google Scholar
    • Export Citation
  • Prestininzi, A. 2008: Relazione conclusiva relativa alle convenzioni stipulate tra il Centro di Ricerca CE.RI. e la Regione Lazio (30/01/2006 e successiva del 04/07/2006), inerente agli studi e alle indagini condotte nelle zone soggette a fenomeni di subsidenza di Tivoli-Guidonia. — CE.RI. La Sapienza, Regione Lazio Protezione Civile, Rome.

    • Search Google Scholar
    • Export Citation
  • Primavera, P. 2007: Caratterizzazione idrogeochimica e confronto dell’area di Tivoli (Roma) con l’area delle terme di Cotilia e Antrodoco (Rieti): considerazioni idrogeologiche. — PhD Thesis, University of Roma III.

    • Export Citation
  • Sagnotti, L., C. Faccenna, R. Funiciello, M. Mattei 1994: Magnetic fabrics and structural setting of Plio– Pleistocene clayey units in an extensional regime: the Tyrrhenian margin of Central Italy. — Journal of Structural Geology, 16, pp. 12431257.

    • Search Google Scholar
    • Export Citation
  • Salvati, R., I.D. Sasowsky 2002: Development of collapse sinkhole in areas of groundwater discharge. — Journal of Hydrology, 264, pp. 111.

    • Search Google Scholar
    • Export Citation
  • Sayyaf M. , M. Mahdavi, O.R. Barani, S. Feiznia, B. Motamedvaziri 2013: Simulation of land subsidence using finite element method: Rafsanjan plain case study. — Natural Hazard, 72, pp. 309322.

    • Search Google Scholar
    • Export Citation
  • Schreiber, M.E., J.A Simo, P.G. Freiberg 2000: Stratigraphic and geochemical controls on naturally occurring arsenic in groundwater, eastern Wisconsin, USA. — Hydrogeology Journal, 8/2, pp. 161176.

    • Search Google Scholar
    • Export Citation
  • Taniguchi M. , A. Dausman, K. Howard, M. Polemio, T. Lakshmana (Eds) 2009: Trends and Sustainability of Groundwater in Highly Stressed Aquifers. — IAHS Press, Wallingford, 318 p.

    • Export Citation
  • Testa G. , S. Lugli 2000: Gypsum-anhydrite transformations in Messinian evaporites of central Tuscany (Italy). — Sedimentary Geology, 130, pp. 249268.

    • Search Google Scholar
    • Export Citation
  • Tomas R. , G. Herrera, J. Delgado, J.M. Lopez-Sanchez, J.J. Mallorqui, J. Mulas 2010: A ground subsidence study based on DInSAR data: calibration of soil parameters and subsidence prediction in Murcia City (Spain). — Engineering Geology, 111, pp. 1930

    • Search Google Scholar
    • Export Citation
  • Villholth, K. 2006: Groundwater assessment and management: Implications and opportunities of globalization. — Hydrogeology Journal, 14/3, pp. 330339.

    • Search Google Scholar
    • Export Citation
  • Whittington, P., J.S. Price 2013: Effect of mine dewatering on the peatlands of the James Bay Lowland: the role of marine sediments on mitigating peatland drainage. — Hydrological Processes, 27, pp. 18451853.

    • Search Google Scholar
    • Export Citation

The author instruction is available in PDF.
Please, download the file from HERE.

 

MANUSCRIPT SUBMISSION

  • Geology SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.226
  • SJR Hirsch-Index (2018): 21

Central European Geology is an Open Access journals with NO "author fee".

Language: English

Founded in 1952
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 63.
Indexing and Abstracting Services:

  • Chemical Abstracts
  • Elsevier Geo Abstracts
  • GEOBASE
  • SCOPUS
  • Referativnyi Zhurnal
  • Zoological Abstracts

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Demény, Attila

Deputy Editor(s)-in-Chief: Raucsik, Béla

Co-ordinating Editor(s): Schmiedl, Gábor

Editorial Board

  • Dobosi, Gábor (Geochemistry)
  • Haas, János Regional Geology and Sedimentology)
  • Márton, Emő (Geodynamics)
  • Ősi, Attila (paleontology)
  • Seghedy, Ioan (petrology and geochemistry)
  • Zajzon, Norbert (petrology and geochemistry)
  • Németh, Norbert (structural geology)
  • Kövér, Szilvia (sedimentology)
  • Götz, Anette (sedimentology)
  • Mojzsis, Stephen J. (petrology, geochemistry and planetology)
  • Hatvani, István Gábor (geomathematics)
  • Pálfy, József (Fossils and Stratigraphic Records)
  • Pogácsás, György (Petroleum Geology)
  • M. Tóth, Tivadar (Mineralogy, Petrology)
  • Török, Ákos (Applied and Environmental Earth Sciences)
  • Henry M. Lieberman (Language Editor)

Advisory Board

Due to the changes in editorial functions, the Advisory Board has been terminated. The participation of former Advisory Board members is highly appreciated and gratefully thanked.

CENTRAL EUROPEAN GEOLOGY
Institute for Geochemical Research
Hungarian Academy of Sciences
Address: Budaörsi út 45. H-1112 Budapest, Hungary
Phone: (06 1) 309 2681
Phone/fax: (06 1) 319 3137
E-mail: demeny@geochem.hu