View More View Less
  • 1 Eötvös Loránd University, Budapest, Hungary

Europe’s largest thermal water system can be found in the capital of Hungary. The springs and wells that supply the famous baths of Budapest discharge mainly from a regional Triassic carbonate rock aquifer system. The springs have mostly been substituted by wells; only a few natural springs are known today, most of which are drained unused into the Danube.

In this study, first the heat potential of these unutilized spring waters in the three natural discharge areas was assessed. Secondly, the heat potential of used thermal waters of three baths was calculated. At the springs discharge and temperature measurements were carried out. In the case of the baths, water management data were evaluated. At the Boltív Spring at the foot of Rózsadomb, the heat potential calculation shows that cooling the spring water to 5 °C would provide 6 MWth thermal capacity, providing a stable energy source for heat pumps. From the overflowing water of the springs of Rudas Bath at the foot of Gellért Hill, a total of 107 kWth heat could be utilized when cooling it to 5 °C, possibly by heat pump system. However, the heat potential of the Bründl Spring is not sufficient for geothermal utilization, mainly due to lack of end users in the vicinity of the spring. Together with the wastewater of the thermal baths, the effluent springs and wastewaters of pools carry a total of 25 MWth waste heat, which is a considerable amount compared to the needs of a public institution. The importance of this study is in the assessment of such potential heat sources (unused lukewarm and thermal springs, wastewater of spa pools) which are present either naturally or artificially, and do not require further thermal water production for heating purposes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alföldi, L. 1979: Budapesti hévizek (Thermal waters of Budapest). — VITUKI Közlemények, 20, pp. 1102.(in Hungarian.

  • Alföldi, L. 1982: A layered thermal-water twin flow system. — Journal of Hydrology, 56, pp. 99105.

  • Alföldi, L., L. Bélteky, T. Böcker, J. Horváth, K. Korim, P. Liebe, R. Rémi 1968: Budapest Hévizei (Thermal waters of Budapest). — VITUKI, Budapest, 365 p. (in Hungarian.

    • Search Google Scholar
    • Export Citation
  • Bodor, P., V. Lovrity 2014: A Boltív-forrás vízhozamának és fizikai, kémiai paramétereinek változása a csapadékesemények és a Duna vízállás függvényében. Értékelés archív adatok és recens mérések alapján (Temporal variation of the discharge and physico-chemical parameters of Boltív Spring depending on the precipitation and the waterlevel of the Danube. Evaluation based on archive data and recent measurements). — TDK thesis, ELTE TTK, 80 p. (in Hungarian.

    • Search Google Scholar
    • Export Citation
  • Bodor, P., V. Lovrity, A. Erőss 2014: Evaluation of temporal variation of the discharge and physico-chemical parameters of Boltív Spring (Budapest, Hungary). — Acta Mineralogica-Petrographica, Abstract Series, 8, 10 p.

    • Search Google Scholar
    • Export Citation
  • Csepregi, A. 1997: A budapesti termálkarszt helyzetének értékelése. (Evaluation of the Buda Thermal Karst). — Manuscript 714/1/4032-1, VITUKI. (in Hungarian)

    • Search Google Scholar
    • Export Citation
  • Csordás, J., L. Pataki 2012: Elfolyó kilowattok! (Effluent kilowatts!). — TDK thesis, ELTE TTK, 59 p. (in Hungarian.

  • Erőss, A., J. Mádl-Szőnyi, A. Csoma 2008: Characteristics of discharge at Rose and Gellért Hills, Budapest, Hungary. — Central European Geology, 51/3, pp. 267281.

    • Search Google Scholar
    • Export Citation
  • Kis-Csitári, T. 2010: Az észak-budai langyos források állapotértékelése a használat kezdetétől napjainkig (Status assessment of the lukewarm springs in North Buda from the beginning of utilization until nowadays). — MSc Dissertation, ELTE TTK, 77 p. (in Hungarian.

    • Search Google Scholar
    • Export Citation
  • Kurcz, R. 2014: Radionuklidok a Budai-hegység északi részének felszín alatti vizeiben (Radionuclides in the groundwaters in the Northern Buda Hills). — MSc Dissertation, ELTE TTK, 64 p. (in Hungarian.

    • Search Google Scholar
    • Export Citation
  • Páll-Somogyi, K. 2010: A Duna hatásának vizsgálata a Gellért-hegy környezetének felszín alatti vizeire (Evaluation of the effect of the Danube on the groundwaters around the Gellért Hill). — Hidrológiai Tájékoztató, pp. 2324.(in Hungarian.

    • Search Google Scholar
    • Export Citation
  • Papp, F. 1942: Budapest meleg gyógyforrásai (Thermal springs of Budapest). — Budapesti Központi Gyógy- és Üdülőhelyi Bizottság Rheuma és Fürdőkutató Intézet, Budapest, 252 p. (in Hungarian.

    • Search Google Scholar
    • Export Citation
  • Schafarzik, F. 1920: A budapesti termális vízhálózatnak egy eddigelé geologiailag nem méltatott forrásáról (About a geologically unappreciated spring among the thermalwaters in Budapest). — Földtani Közlöny, 50, pp. 8385.(in Hungarian.

    • Search Google Scholar
    • Export Citation
  • Schnegg, P.A., N. Doerfliger 1997: An inexpensive flow-through field fluorometer. — In: Jeannin, P.Y. (Ed.): 6th Conference on Limestone Hydrology and Fissured Media. Proc. 12th Intern. Symp., pp. 4750.

    • Search Google Scholar
    • Export Citation
  • Zsuppán, K. 2010: A budapesti termálfürdők kifolyó vizeinek hőpotenciálja (Heat potential of the effluent waters of the thermal baths in Budapest). — MSc Dissertation, ELTE TTK, 70 p. (in Hungarian)

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2020 0 4 8
Nov 2020 0 12 4
Dec 2020 0 4 8
Jan 2021 0 4 3
Feb 2021 0 6 2
Mar 2021 0 3 6
Apr 2021 0 1 1