Authors:
Arnold Gucsik University of Johannesburg, Johannesburg, South Africa
Hungarian Academy of Sciences, Budapest, Hungary

Search for other papers by Arnold Gucsik in
Current site
Google Scholar
PubMed
Close
,
Tasuku Okumura Thermo Fisher Scientific K.K., Yokohama, Japan

Search for other papers by Tasuku Okumura in
Current site
Google Scholar
PubMed
Close
,
Hirotsugu Nishido Okayama University of Science, Okayama, Japan

Search for other papers by Hirotsugu Nishido in
Current site
Google Scholar
PubMed
Close
,
Ildikó Gyollai University of Vienna, Vienna, Austria

Search for other papers by Ildikó Gyollai in
Current site
Google Scholar
PubMed
Close
,
Kiyotaka Ninagawa Okayama University of Science, Okayama, Japan

Search for other papers by Kiyotaka Ninagawa in
Current site
Google Scholar
PubMed
Close
,
Natalie Deseta University of New Brunswick, Fredericton, Canada

Search for other papers by Natalie Deseta in
Current site
Google Scholar
PubMed
Close
, and
Péter Rózsa University of Debrecen, Debrecen, Hungary

Search for other papers by Péter Rózsa in
Current site
Google Scholar
PubMed
Close
Open access

Quartz grains from the Ries impact structure containing shock-induced microstructures were investigated using Scanning Electron Microscopy in cathodoluminescence (SEM-CL), secondary electron (SEM-SE) and back-scattered electron (SEM-BSE) modes as well as Mott–Seitz analysis. The purpose of this study is to evaluate the mechanism by which CL detects Planar Deformation Features (PDFs) in quartz, which is one of the most important indicators of shock metamorphism in rock-forming minerals. PDFs are micron-scale features not easily identified using optical microscopy or scanning electron microscopy. The CL spectrum of PDFs in quartz that has suffered relatively high shock pressure shows no or a relatively weak emission band at around 385 nm, whereas an emission band with a maximum near 650 nm is observed independent of shock pressure. Thus, the ~385 nm intensity in shocked quartz demonstrates a tendency to decrease with increasing shock metamorphic stage, whereas the 650 nm band remains fairly constant. The result indicates that the emission band at 385 nm is related to the deformed structure of quartz as PDFs.

  • Alonso, P.J., L.E. Halliburton, E.E. Kohnke, R.B. Bossoli 1983: X-ray induced luminescence in crystalline SiO2. – Journal of Applied Physics, 54, pp. 53695375.

    • Search Google Scholar
    • Export Citation
  • Boggs, S., D.H. Krinsley, G.G. Goles, A. Seydolali, H. Dypvik 2001: Identification of shocked quartz by scanning cathodoluminescence imaging. – Meteoritics and Planetary Science, 36, 783793.

    • Search Google Scholar
    • Export Citation
  • Deutsch, A. 1998: Examples for terrestrial impact structures. – In: Marfunin, A.S. (Ed.): Mineral matter in space, mantle, ocean floor, biosphere, environmental management, and jewelry. Advanced Mineralogy Series, 3, pp. 119129.

    • Search Google Scholar
    • Export Citation
  • Dypvik, H., S.T. Gudlaugsson, M. Tsikalas, M.Jr. Attrep, R.E.Jr. Ferrell, D.H. Krinsley, A. Mørk, J.I. Faleide, J. Nagy 1996: Mjølnir structure: An impact crater in the Barents Sea. – Geology, 24, pp. 779782.

    • Search Google Scholar
    • Export Citation
  • Engelhardt, W.v. 1990. Distribution, petrography and shock metamorphism of the ejecta of the Ries crater in Germany – a review. – Tectonophysics, 171, pp. 259273.

    • Search Google Scholar
    • Export Citation
  • Engelhardt, W.v. , W. Bertsch 1969: Shock induced planar deformation structures in quartz from the Ries crater, Germany. – Contribution to Mineralogy and Petrology, 20, pp. 203234.

    • Search Google Scholar
    • Export Citation
  • French, B.M., 1998: Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. – LPI Contribution, 954, Lunar and Planetary Institute, Houston, 120 p.

    • Search Google Scholar
    • Export Citation
  • French, B.M., N.M. Short (Eds) 1968: Shock Metamorphism of Natural Materials. - Mono Book Corporation, Baltimore, 644 p.

  • French, B.M., C. Koeberl, C. 2010: The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why. – Earth Science Reviews, 98, pp. 123170.

    • Search Google Scholar
    • Export Citation
  • Gaft, M., R. Reisfeld, G. Panczer 2005: Luminescence Spectroscopy of Minerals and Materials. – Springer-Verlag, Berlin, Heidelberg, 356 p.

    • Search Google Scholar
    • Export Citation
  • Goltrant, O., P. Cordier, J.C. Doukhan 1991: Planar deformation features in shocked quartz: a transmission electron microscopy investigation. – Earth and Planetary Science Letters, 106, pp. 103115.

    • Search Google Scholar
    • Export Citation
  • Goltrant, O., H. Leroux, J.C. Doukhan, P. Cordier 1992: Formation mechanism of planar deformation features in naturally shocked quartz. – Physics of the Earth Planetary Interiors, 74, pp. 219240.

    • Search Google Scholar
    • Export Citation
  • Gorton, N.T., G. Walker, S.D. Burley 1997: Experimental analysis of the composite blue cathodoluminescence emission in quartz. – Journal of Luminescence, 72–74, pp. 669671.

    • Search Google Scholar
    • Export Citation
  • Götte, Th. 2009: Petrological modi?cations in continental target rocks from terrestrial impact structures: Evidence from cathodoluminescence: – In Gucsik, A. (Ed.): Cathodoluminescence and its Application in the Planetary Sciences, Springer, pp. 4560.

    • Search Google Scholar
    • Export Citation
  • Götte, Th., Th. Pettke, K. Ramseyer, M. Koch-Müller, J. Mullis 2011: Cathodoluminescence properties and trace element signature of hydrothermal quartz: A fingerprint of growth dynamics. – Mineralogical Magazine, 96, pp. 802813.

    • Search Google Scholar
    • Export Citation
  • Götze, J., M. Plötze, D. Habermann 2001: Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz – a review. – Mineralogy and Petrology, 71, pp. 225250.

    • Search Google Scholar
    • Export Citation
  • Grieve, R.A.F. 1987: Terrestrial impact structures. – Annual Reviews of Earth and Planetary Science, 15, pp. 245270.

  • Grieve, R.A.F. 1991: Terrestrial impact: The record in the rocks. – Meteoritics, 26, pp. 175194.

  • Grieve, R.A.F., F. Langenhorst, D. Stöffler 1996: Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience. – Meteoritics and Planetary Science, 31, pp. 635.

    • Search Google Scholar
    • Export Citation
  • Gucsik, A., C. Koeberl, F. Brandstätter, E. Libowitzky, W.U. Reimold 2003: Scanning electron microscopy, cathodoluminescence, and Raman spectroscopy of experimentally shock metamorphosed quartzite. – Meteoritics and Planetary Sciences, 38, pp. 11871197.

    • Search Google Scholar
    • Export Citation
  • Gucsik, A., C. Koeberl, F. Brandstätter, E. Libowitzky, M. Zhang 2004: Infrared, Raman and cathodoluminescence studies of impact glasses. – Meteoritics and Planetary Science, 39, pp. 12731285.

    • Search Google Scholar
    • Export Citation
  • Gucsik, A., T. Okumura, M. Kayama, H. Nishido, K. Ninagawa 2011: Planar deformation features in quartz from the Ries impact crater: Advanced by Micro-Raman Spectroscopy. – Spectroscopy Letters, 44, pp. 469473.

    • Search Google Scholar
    • Export Citation
  • Hamers, M.F., M.R. Drury 2011: Scanning electron microscope-cathodoluminescence (SEM-CL) imaging of planar deformation features and tectonic deformation lamellae in quartz. – Meteoritics and Planetary Science, 46, pp. 18141831.

    • Search Google Scholar
    • Export Citation
  • Hayward, C.L. 1998: Cathodoluminescence of ore and gangue minerals and its application in the minerals industry. – In: Cabri, L.J., D.J. Vaughan (Eds): Mineralogical Association of Canada Short Course Series, 27, pp. 269325.

    • Search Google Scholar
    • Export Citation
  • Hörz, F. 1982: Ejecta of the Ries crater, Germany. – In: Silver, L.T., P.H. Schultz (Eds): Geological Implications of Impacts of Large Asteroids and Comets on the Earth. Geological Society of America Special Paper, 190, pp. 3955.

    • Search Google Scholar
    • Export Citation
  • Itoh, C., K. Tanimura, N. Itoh 1988: Optical studies of self-trapped excitons in SiO2. – Journal of Physics C, 21, pp. 46934702.

  • John, B., J.B. Lyons, C.B. Officer, P.E. Borella, R. Lahodynsky 1993: Planar lammellar substructures in quartz. – Earth and Planetary Science Letters, 119, pp. 431440.

    • Search Google Scholar
    • Export Citation
  • Kayama, M., S. Nakano, H. Nishido 2010: Characteristics of emission centers in alkali feldspar: A new approach by using cathodoluminescence spectral deconvolution. – American Mineralogist, 95, pp. 17831795.

    • Search Google Scholar
    • Export Citation
  • Koeberl, C. 1997: Impact cratering: the mineralogical and geochemical evidence. – In: Johnson, K.S., J.A. Campbell (Eds): Ames Structure in Northwest Oklahoma and Similar Features: Origin and Petroleum Production (1995 Symposium). Oklahoma Geological Survey Circular, 100, pp. 3054.

    • Search Google Scholar
    • Export Citation
  • Langenhorst, F. 2002: Shock metamorphism of some minerals: Basic introduction and microstructural observations. – Bulletin of Czech Geological Survey, 77, pp. 265282.

    • Search Google Scholar
    • Export Citation
  • Leroux, H., W.U. Reimold, J.C. Doukhan 1994: A T.E.M. investigation of shock metamorphism in quartz from the Vredefort dome, South Africa. – Tectonophysics, 230, pp. 223239.

    • Search Google Scholar
    • Export Citation
  • Luff, B.J., P.D. Townsend 1990: Cathodoluminescence of synthetic quartz. – Journal of Physics: Condensed Matter, 2, pp. 80898097.

  • Mott, N. F., R.W. Gurney 1948: Electronic Processes in Ionic Crystals. – Clarendon Press, Oxford, pp. 219224.

  • Nasdala, L., M. Zhang, U. Kempe, G. Panczer, M. Gaft, M. Andrut, M. Plötze 2003: Spectroscopic methods applied to zircon. – In: Hanchar J.M., P.W.O. Hoskin (Eds): Zircon. Reviews of Mineralogy and Geochemistry, 53, pp. 427467.

    • Search Google Scholar
    • Export Citation
  • Okumura, T., H. Nishido, K. Ninagawa, T. Sakamoto 2006: Cathodoluminescence and Thermoluminescence Studies of Clay Minerals. – Clay Science, 13, pp. 5968.

    • Search Google Scholar
    • Export Citation
  • Okumura, T., A. Gucsik, H. Nishido, K. Ninagawa, S. Toyoda 2009: Cathodoluminescence microcharacterization of ballen silica in impactites. – AIP Proceedings of the International Conference, 1163, pp. 148155.

    • Search Google Scholar
    • Export Citation
  • O’Reilly, E.P., J. Robertson 1983: Theory of defects in vitreous silicon dioxide. – Physical Reviews, B27, pp. 37803795.

  • Osinski, G.R. 2004: Impact melt rocks from the Ries impact structure, Germany: an origin as impact melt flows? – Earth and Planetary Science Letters, 226, pp. 529543.

    • Search Google Scholar
    • Export Citation
  • Perny, B., P. Eberhardt, K. Ramseyer, J. Mullis, R. Pankrath 1992: Microdistribution of Al, Li, and Na in a quartz: possible causes and correlation with short-lived cathodoluminescence. – American Mineralogist, 77, pp. 534544.

    • Search Google Scholar
    • Export Citation
  • Ramseyer, K., A.A. AlDahan, B. Collini, O. Landström 1992: Petrological modifications in granitic rocks from the Siljan impact structure: evidence from cathodoluminescence. – Tectonophyics, 216, pp. 195204.

    • Search Google Scholar
    • Export Citation
  • Seitz, F. 1939: An introduction of crystal luminescence. – Transactions of the Faraday Society, 35, pp. 7485.

  • Seyedolali, A., D. Krinsley, S. Boggs, P.F. O’Hara, H. Dypvik, G.G. Goles 1997: Provenance interpretation of quartz by scanning electron microscope-cahtodoluminescence fabric analysis. – Geology, 25, pp. 787790.

    • Search Google Scholar
    • Export Citation
  • Sharp, T.G., P.S. de Carli 2006: Shock effects in meteorites. – In: Lauretta, D.S., Jr.H.Y. McSween (Eds): Meteorites and the Early Solar System II. University of Arizona Press, Tucson, pp. 653677.

    • Search Google Scholar
    • Export Citation
  • Sigel, G.H., M.J. Marrone 1981: Photoluminescence in as-drawn and irradiated silica optical fibers: An assessment of the role of non-bridging oxygen defect centers. – Journal of Non-Crystalline Solids, 45, pp. 235247.

    • Search Google Scholar
    • Export Citation
  • Staudacher, T., K.E. Jessberger, B. Dominik, T. Kristen, A.O. Schaeffer 1982: 40Ar-39Ar of rocks and glasses from the Nördlinger Ries crater and the temperature history of impact breccias. – Journal of Geophysics, 51, pp. 111.

    • Search Google Scholar
    • Export Citation
  • Stevens-Kalceff, M.A., M.R. Phillips 1995: Cathodoluminescence microcharacterization of the defect structure of quartz. – Physical Review B, 52, pp. 31223134.

    • Search Google Scholar
    • Export Citation
  • Stevens-Kalceff, M.A., M.R. Phillips, A.R. Moon, W. Kalceff 2000: Cathodoluminescence microcharacterisation of silicon dioxide polymorphs. – In: Pagel, M., V. Barbin, Ph. Blanc, D. Ohnenstetter (Eds): Cathodoluminescence in Geosciences, Springer, Berlin, Heidelberg, New York, pp. 193224.

    • Search Google Scholar
    • Export Citation
  • Stöffler, D. 1974: Deformation and transformation of rock-forming minerals by natural and experimental shock processes. – Fortschritte Mineralogie, 49, pp. 256298.

    • Search Google Scholar
    • Export Citation
  • Stöffler, D., R.A.F. Grieve 2007: Impactites. – In: Fettes, D., J. Desmons (Eds): Metamorphic Rocks: A Classification and Glossary of Terms, Recommendations of the International Union of Geological Sciences, Cambridge University Press, Cambridge, 258 p.

    • Search Google Scholar
    • Export Citation
  • Toyoda, S., M. Ikeya 1991: Thermal stabilities of paramagnetic defect and impurity centers in quartz: Basis for ESR dating of thermal history. – Geochemical Journal, 25, pp. 437445.

    • Search Google Scholar
    • Export Citation
  • Trepmann, C.A., T. Götte, J.G. Spray 2005: Impact-related Ca-metasomatism in crystalline target rocks from the Charlevoix structure, Canada. – Canadian Mineralogist, 43, pp. 553567.

    • Search Google Scholar
    • Export Citation
  • Yacobi, B., D. Holt 1990: Cathodoluminescence microscopy of inorganic solids. – Plenum Press, New York, 308 p.

  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Attila DEMÉNY

Deputy Editor(s)-in-Chief: Béla RAUCSIK

Co-ordinating Editor(s): Gábor SCHMIEDL

Editorial Board

  • Zsolt BENKÓ (Geochemistry, Ar dating; Institute for Nuclear Research, Debrecen)
  • Szabolcs HARANGI (Petrology, geochemistry, volcanology; Eötvös Loránd University, Budapest)
  • Anette GÖTZ (Sedimentology; Landesamt für Bergbau, Energie und Geologie, Hannover)
  • János HAAS (Regional Geology and Sedimentology; Eötvös Loránd University, Budapest)
  • István Gábor HATVANI (Geomathematics; Institute for Geological and Geochemical Research, Budapest)
  • Henry M. LIEBERMAN (Language Editor; Salt Lake City)
  • János KOVÁCS (Quaternary geology; University of Pécs)
  • Szilvia KÖVÉR (Sedimentology; Eötvös Loránd University, Budapest)
  • Tivadar M. TÓTH (Mineralogy; Petrology    University of Szeged)
  • Stephen J. MOJZSIS (Petrology, geochemistry and planetology; University of Colorado Boulder)
  • Norbert NÉMETH (Structural geology; University of Miskolc)
  • Attila ŐSI (Paleontology; Eötvös Loránd University, Budapest)
  • József PÁLFY (Fossils and Stratigraphic Records; Eötvös Loránd University, Budapest)
  • György POGÁCSÁS (Petroleum Geology; Eötvös Loránd University, Budapest)
  • Krisztina SEBE (Tectonics, sedimentology, geomorphology University of Pécs)
  • Ioan SEGHEDY (Petrology and geochemistry; Institute of Geodynamics, Bucharest)
  • Lóránd SILYE (Paleontology; Babeș-Bolyai University, Cluj-Napoca)
  • Ákos TÖRÖK (Applied and Environmental Earth Sciences; Budapest University of Technology and Economics, Budapest)
  • Norbert ZAJZON (Petrology and geochemistry; University of Miskolc)
  • Ferenc MOLNÁR (ore geology, geochemistry, geochronology, archaeometry; Geological Survey of Finland, Espoo)

Advisory Board

Due to the changes in editorial functions, the Advisory Board has been terminated. The participation of former Advisory Board members is highly appreciated and gratefully thanked.

CENTRAL EUROPEAN GEOLOGY
Institute for Geochemical Research
Hungarian Academy of Sciences
Address: Budaörsi út 45. H-1112 Budapest, Hungary
Phone: (06 1) 309 2681
Phone/fax: (06 1) 319 3137
E-mail: demeny@geochem.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • Chemical Abstracts
  • Elsevier Geo Abstracts
  • GEOBASE
  • SCOPUS
  • Referativnyi Zhurnal
  • Zoological Abstracts

 

2023  
Scopus  
CiteScore 1.4
CiteScore rank Q3 (Geology)
SNIP 0.577
Scimago  
SJR index 0.206
SJR Q rank Q4

Central European Geology
Publication Model Online only Gold Open Access
Submission Fee none
Article Processing Charge none
Regional discounts on country of the funding agency  
Further Discounts  
Subscription Information Gold Open Access
Purchase per Title  

Central European Geology
Language English
Size Vol 1-63: B5
Vol 64- : A4
Year of
Foundation
2007 (1952)
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1788-2281 (Print)
ISSN 1789-3348 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2024 0 17 1
Oct 2024 0 148 11
Nov 2024 0 44 1
Dec 2024 0 28 4
Jan 2025 0 64 26
Feb 2025 0 56 6
Mar 2025 0 27 0