Authors:
Gyula Bögöly Budapest University of Technology and Economics, Budapest, Hungary

Search for other papers by Gyula Bögöly in
Current site
Google Scholar
PubMed
Close
,
Ákos Török Budapest University of Technology and Economics, Budapest, Hungary

Search for other papers by Ákos Török in
Current site
Google Scholar
PubMed
Close
, and
Péter Görög Budapest University of Technology and Economics, Budapest, Hungary

Search for other papers by Péter Görög in
Current site
Google Scholar
PubMed
Close
Open access

Stone masonry arch bridges in North Hungary represent cultural heritage values. For the maintenance and preservation of these bridges detailed mapping of lithologies and weathering forms are required. The purpose of this paper is to present the identified lithotypes, their conditions (weathering grade) and their petrophysical properties by using in situ lithological mapping, documentation of weathering forms, non-destructive tests and laboratory analyses. Furthermore these analyses demonstrate the difficulties of characterization and diagnostics of the historical construction materials. Additionally the results of condition assessments and the properties of the four different dimension stones from four different sites provide examples for the large dissimilarities regarding the strength parameters. The above-listed parameters are required as input data for stability calculations and modeling of these structures.

  • ASTM 2001: Standard Test Method for Determination of Rock Hardness by Rebound Hammer Method. – ASTM Stand., 04.09, D 587300.

  • Aydin, A., A. Basu 2005: The Schmidt hammer in rock material characterization. – Engineering Geology, 81, pp. 114.

  • Bednarik, M., B. Moshammer, M. Heinrich, R. Holzer, M. Laho, J. Rabeder, C. Uhlir, M. Unterwurzacher 2014: Engineering geological properties of Leitha Limestone from historical quarries in Burgenland and Styria, Austria. – Engineering Geology, 176, pp. 6678.

    • Search Google Scholar
    • Export Citation
  • Buyuksagis, I.S., R.M. Goktan 2007: The effect of Schmidt hammer type on uniaxial compressive strength prediction of rock. – International Journal of Rock Mechanics and Mining Sciences, 44, pp. 299307.

    • Search Google Scholar
    • Export Citation
  • Callaway, P., M. Gilbert, C.C. Smith 2012: Influence of backfill on the capacity of masonry arch brides. – Bridge Engineering, 165 (BE3), pp. 147158.

    • Search Google Scholar
    • Export Citation
  • Cavicchi, A., L. Gambarotta 2006: Two-dimensional finite element upper bound limit analysis of masonry bridges. – Computers and Structures, 84, pp. 23162328.

    • Search Google Scholar
    • Export Citation
  • Fitzner, B., K. Heinrichs, R. Kownatzki 1995: Weathering forms-classification and mapping. – In: Denkmalpflege und Naturwissenschaft, Natursteinkonservierung I. Ernst and Sohn, Berlin, pp. 4188.

    • Search Google Scholar
    • Export Citation
  • Gáll, I. 1970: Régi magyar hidak (Old Hungarian bridges). – Muszaki Kiadó, Budapest, pp. 346. (in Hungarian)

  • Gálos, M., B. Vásárhelyi 2005: Közúti boltozott kohidaink (Our stone masonry road-bridges). – Díszíto Építo Mu Termésko, VII/2, pp. 2125. (in Hungarian)

    • Search Google Scholar
    • Export Citation
  • Gilbert, M., C. Melbourne 1994: Rigid-block analysis of masonry structures. – The Structural Engineer, 72/21, pp. 356361.

  • Giordano, A., E. Mele, A.D. Luca 2002: Modelling of historical masonry structures: comparison of different approaches through a case study. – Engineering Structures, 24, pp. 10571069.

    • Search Google Scholar
    • Export Citation
  • Gubányi-Kléber J. , B. Vásárhelyi 2004: A héhalmi boltozott kohíd vizsgálata (Investigation of the stone masonry arch bridge of Héhalom). – Mélyépítés, 1, pp. 1620. (in Hungarian)

    • Search Google Scholar
    • Export Citation
  • Heyman, J. 1995: The Stone Skeleton: Structural Engineering of Masonry Architecture. – Cambridge University Press, Cambridge, 159 p.

  • ICOMOS 2008: Illustrated Glossary on Stone Deterioration Patterns. – ICOMOS-ISCS, Champigny/Marne, 86 p.

  • ISRM 1978: Suggested methods for determining hardness and abrasiveness of rocks. – Int. J. Rock Mech. Min. Sci., Geomech. Abstr., 15, pp. 8997.

    • Search Google Scholar
    • Export Citation
  • Janvier-Badosa, S., K. Beck, X. Brunetaud, M. Al-Mukhtar 2014: The occurrence of gypsum in the scaling of stones at the Castle of Chambord (France). – Environmental Earth Sciences, 71/11, pp. 47514759.

    • Search Google Scholar
    • Export Citation
  • Kahraman, S. 2001: Evaluation of simple methods for assessing the uniaxial compressive strength of rock. – Int. J. Rock Mech. Min. Sci., 38, pp. 981994.

    • Search Google Scholar
    • Export Citation
  • Magyar Útügyi Társaság 2006: Útügyi Muszaki Eloírás 813/2005 (Technical Standard of Highway Engineering 813/2005). – Magyar Útügyi Társaság, pp. 2229, 61–108. (in Hungarian)

    • Search Google Scholar
    • Export Citation
  • Martínez-Martínez, J., D. Benavente, M. Gomez-Heras, L. Marco-Castaño, M.Á. García-del-Cura 2013: Non-linear decay of building stones during freeze-thaw weathering processes. – Construction and Building Materials, 38, pp. 443454.

    • Search Google Scholar
    • Export Citation
  • MSZ 1991:1960. Természetes építokövek vizsgálati módszerei (Testing Methods of Natural Dimension Stones). – MSZ EN 12371:2002. (in Hungarian)

    • Search Google Scholar
    • Export Citation
  • Orbán, Z. 2006: Condition assessment and rehabilitation of masonry arch railway bridges. – Concrete Structures, 7, pp. 2230.

  • Prikryl R. 2007: Understanding the Earth scientist’s role in the pre-restoration research of monuments: an overview. – In: Prikryl R., B.J. Smith (Eds): Building Stone Decay: From Diagnosis to Conservation. Geological Society, London, Special Publications, 271, pp. 921.

    • Search Google Scholar
    • Export Citation
  • Prikryl, R., A. Štastná 2010: Contribution of clayey–calcareous silicite to the mechanical properties of structural mortared rubble masonry of the medieval Charles Bridge in Prague (Czech Republic). – Engineering Geology, 115, pp. 257267.

    • Search Google Scholar
    • Export Citation
  • Prikryl, R., J. Svobodová, P. Siegel, M. Chvátal, M. Novotná, R.A. Sanchez, M. Mézlová, K. Mysková, J. Faltus, J. Korecky 2002: Weathering of limestone cladding above the waterproofing layer: salt action due to previous restoration of Colonade (Valtice-Lednice area, Czech Republic). – In: Prikryl, R., H. Viles (Eds): Understanding and Managing Stone Decay. Carolinum Press, Prague, pp. 209221.

    • Search Google Scholar
    • Export Citation
  • Prikryl R. , Z. Weishauptová, M. Novotná, J. Prikrylová, Štastná A. 2010: Physical and mechanical properties of the repaired sandstone ashlars in the facing masonry of the Charles Bridge in Prague (Czech Republic) and an analytical study for the causes of its rapid decay. – Environmental Earth Sciences, 63, pp. 16231639.

    • Search Google Scholar
    • Export Citation
  • Schafarzik, F. 1904: A magyar szent korona országainak területén létezo kobányák (Stone Quarries in Historical Hungary). – Franklin Társulat Könyvnyomdája, Budapest. (in Hungarian)

    • Search Google Scholar
    • Export Citation
  • Smith, B.J., A.V. Turkington, P.A. Warke, P.A.M. Basheer, J.J. McAlister, J. Menleely, J.M. Curran 2002: Modelling rapid retreat of building sandstones. A case study from a polluted maritime environment. – In: Siegesmund, S., T.S. Weiss, A. Vollbrecht (Eds): Natural Stones, Weathering Phenomena, Conservation Strategies and Case Studies. Geological Society Special Publications, 205, pp. 339354.

    • Search Google Scholar
    • Export Citation
  • Turkington, A.V., T.R. Paradise 2005: Sandstone weathering: a century of research and innovation. – Geomorphology, 67/1–2, pp. 229253.

    • Search Google Scholar
    • Export Citation
  • Török, Á. 2002: Oolitic limestone in a polluted atmospheric environment in Budapest: weathering phenomena and alterations in physical properties. – Geological Society, London, Special Publications, 205/1, pp. 363379.

    • Search Google Scholar
    • Export Citation
  • Török, Á. 2003: Surface strength and mineralogy of weathering crusts on limestone buildings in Budapest. – Building and Environment, 38, pp. 11851192.

    • Search Google Scholar
    • Export Citation
  • Török Á. 2007: Morphology and detachment mechanism of weathering crusts of porous limestone in the urban environment of Budapest. – Central European Geology, 50/3, pp. 225240.

    • Search Google Scholar
    • Export Citation
  • Török, Á., N. Rozgonyi, R. Prikryl, J. Prikrylová 2004: Leithakalk: the ornamental and building stone of Central Europe, an overview. – In: Prikryl, R. (Ed.), Dimension Stone. Balkema, Rotterdam, pp. 8993.

    • Search Google Scholar
    • Export Citation
  • Török, Á., T. Licha, K. Simon, S. Siegesmund 2011: Urban and rural limestone weathering; the contribution of dust to black crust formation. – Environmental Earth Sciences, 63, pp. 675693.

    • Search Google Scholar
    • Export Citation
  • Vásárhelyi, B. 2005: Statistical analysis of the influence of water content on the strength of Miocene limestone. – Rock Mechanics and Rock Engineering, 38/1, pp. 6976.

    • Search Google Scholar
    • Export Citation
  • Warke, P., J. McKinley, J.B. Smith 2006: Variable weathering response in sandstone: factors controlling decay sequences. – Earth Surface Processes and Landforms, 31/6, pp. 715735.

    • Search Google Scholar
    • Export Citation
  • Yasar, E., Y. Erdogan 2004: Estimation of rock physiomechanical properties using hardness methods. – Engineering Geology, 71, pp. 281288.

    • Search Google Scholar
    • Export Citation
  • Yershov, E.D. 2004: General Geocryology. – Cambridge University Press, Cambridge, 280 p.

  • Yilmaz, I., H. Sendir 2002: Correlation of Schmidt hardness with unconfined compressive strength and Young’s modulus in gypsum from Sivas (Turkey). – Engineering Geology, 66, pp. 211219.

    • Search Google Scholar
    • Export Citation
  • Yu, S., C.T. Oguchi 2010: Role of pore size distribution in salt uptake, damage, and predicting salt susceptibility of eight types of Japanese building stones. – Engineering Geology, 115, pp. 226236.

    • Search Google Scholar
    • Export Citation
  • Zhang, L. 2005: Engineering properties of rocks. – Elsevier Geo-Engineering Book Series, 4, pp. 178181.

  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE

 

Senior editors

Editor(s)-in-Chief: Attila DEMÉNY

Deputy Editor(s)-in-Chief: Béla RAUCSIK

Co-ordinating Editor(s): Gábor SCHMIEDL

Editorial Board

  • Zsolt BENKÓ (Geochemistry, Ar dating; Institute for Nuclear Research, Debrecen)
  • Szabolcs HARANGI (Petrology, geochemistry, volcanology; Eötvös Loránd University, Budapest)
  • Anette GÖTZ (Sedimentology; Landesamt für Bergbau, Energie und Geologie, Hannover)
  • János HAAS (Regional Geology and Sedimentology; Eötvös Loránd University, Budapest)
  • István Gábor HATVANI (Geomathematics; Institute for Geological and Geochemical Research, Budapest)
  • Henry M. LIEBERMAN (Language Editor; Salt Lake City)
  • János KOVÁCS (Quaternary geology; University of Pécs)
  • Szilvia KÖVÉR (Sedimentology; Eötvös Loránd University, Budapest)
  • Tivadar M. TÓTH (Mineralogy; Petrology    University of Szeged)
  • Stephen J. MOJZSIS (Petrology, geochemistry and planetology; University of Colorado Boulder)
  • Norbert NÉMETH (Structural geology; University of Miskolc)
  • Attila ŐSI (Paleontology; Eötvös Loránd University, Budapest)
  • József PÁLFY (Fossils and Stratigraphic Records; Eötvös Loránd University, Budapest)
  • György POGÁCSÁS (Petroleum Geology; Eötvös Loránd University, Budapest)
  • Krisztina SEBE (Tectonics, sedimentology, geomorphology University of Pécs)
  • Ioan SEGHEDY (Petrology and geochemistry; Institute of Geodynamics, Bucharest)
  • Lóránd SILYE (Paleontology; Babeș-Bolyai University, Cluj-Napoca)
  • Ákos TÖRÖK (Applied and Environmental Earth Sciences; Budapest University of Technology and Economics, Budapest)
  • Norbert ZAJZON (Petrology and geochemistry; University of Miskolc)
  • Ferenc MOLNÁR (ore geology, geochemistry, geochronology, archaeometry; Geological Survey of Finland, Espoo)

Advisory Board

Due to the changes in editorial functions, the Advisory Board has been terminated. The participation of former Advisory Board members is highly appreciated and gratefully thanked.

CENTRAL EUROPEAN GEOLOGY
Institute for Geochemical Research
Hungarian Academy of Sciences
Address: Budaörsi út 45. H-1112 Budapest, Hungary
Phone: (06 1) 309 2681
Phone/fax: (06 1) 319 3137
E-mail: demeny@geochem.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • Chemical Abstracts
  • Elsevier Geo Abstracts
  • GEOBASE
  • SCOPUS
  • Referativnyi Zhurnal
  • Zoological Abstracts

 

2023  
Scopus  
CiteScore 1.4
CiteScore rank Q3 (Geology)
SNIP 0.577
Scimago  
SJR index 0.206
SJR Q rank Q4

Central European Geology
Publication Model Online only Gold Open Access
Submission Fee none
Article Processing Charge none
Regional discounts on country of the funding agency  
Further Discounts  
Subscription Information Gold Open Access
Purchase per Title  

Central European Geology
Language English
Size Vol 1-63: B5
Vol 64- : A4
Year of
Foundation
2007 (1952)
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1788-2281 (Print)
ISSN 1789-3348 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2024 0 108 4
Mar 2024 0 42 0
Apr 2024 0 10 8
May 2024 0 31 2
Jun 2024 0 60 1
Jul 2024 0 44 6
Aug 2024 0 0 0