View More View Less
  • 1 Budapest University of Technology and Economics, Budapest, Hungary

Stone masonry arch bridges in North Hungary represent cultural heritage values. For the maintenance and preservation of these bridges detailed mapping of lithologies and weathering forms are required. The purpose of this paper is to present the identified lithotypes, their conditions (weathering grade) and their petrophysical properties by using in situ lithological mapping, documentation of weathering forms, non-destructive tests and laboratory analyses. Furthermore these analyses demonstrate the difficulties of characterization and diagnostics of the historical construction materials. Additionally the results of condition assessments and the properties of the four different dimension stones from four different sites provide examples for the large dissimilarities regarding the strength parameters. The above-listed parameters are required as input data for stability calculations and modeling of these structures.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ASTM 2001: Standard Test Method for Determination of Rock Hardness by Rebound Hammer Method. – ASTM Stand., 04.09, D 587300.

  • Aydin, A., A. Basu 2005: The Schmidt hammer in rock material characterization. – Engineering Geology, 81, pp. 114.

  • Bednarik, M., B. Moshammer, M. Heinrich, R. Holzer, M. Laho, J. Rabeder, C. Uhlir, M. Unterwurzacher 2014: Engineering geological properties of Leitha Limestone from historical quarries in Burgenland and Styria, Austria. – Engineering Geology, 176, pp. 6678.

    • Search Google Scholar
    • Export Citation
  • Buyuksagis, I.S., R.M. Goktan 2007: The effect of Schmidt hammer type on uniaxial compressive strength prediction of rock. – International Journal of Rock Mechanics and Mining Sciences, 44, pp. 299307.

    • Search Google Scholar
    • Export Citation
  • Callaway, P., M. Gilbert, C.C. Smith 2012: Influence of backfill on the capacity of masonry arch brides. – Bridge Engineering, 165 (BE3), pp. 147158.

    • Search Google Scholar
    • Export Citation
  • Cavicchi, A., L. Gambarotta 2006: Two-dimensional finite element upper bound limit analysis of masonry bridges. – Computers and Structures, 84, pp. 23162328.

    • Search Google Scholar
    • Export Citation
  • Fitzner, B., K. Heinrichs, R. Kownatzki 1995: Weathering forms-classification and mapping. – In: Denkmalpflege und Naturwissenschaft, Natursteinkonservierung I. Ernst and Sohn, Berlin, pp. 4188.

    • Search Google Scholar
    • Export Citation
  • Gáll, I. 1970: Régi magyar hidak (Old Hungarian bridges). – Muszaki Kiadó, Budapest, pp. 346. (in Hungarian)

  • Gálos, M., B. Vásárhelyi 2005: Közúti boltozott kohidaink (Our stone masonry road-bridges). – Díszíto Építo Mu Termésko, VII/2, pp. 2125. (in Hungarian)

    • Search Google Scholar
    • Export Citation
  • Gilbert, M., C. Melbourne 1994: Rigid-block analysis of masonry structures. – The Structural Engineer, 72/21, pp. 356361.

  • Giordano, A., E. Mele, A.D. Luca 2002: Modelling of historical masonry structures: comparison of different approaches through a case study. – Engineering Structures, 24, pp. 10571069.

    • Search Google Scholar
    • Export Citation
  • Gubányi-Kléber J. , B. Vásárhelyi 2004: A héhalmi boltozott kohíd vizsgálata (Investigation of the stone masonry arch bridge of Héhalom). – Mélyépítés, 1, pp. 1620. (in Hungarian)

    • Search Google Scholar
    • Export Citation
  • Heyman, J. 1995: The Stone Skeleton: Structural Engineering of Masonry Architecture. – Cambridge University Press, Cambridge, 159 p.

  • ICOMOS 2008: Illustrated Glossary on Stone Deterioration Patterns. – ICOMOS-ISCS, Champigny/Marne, 86 p.

  • ISRM 1978: Suggested methods for determining hardness and abrasiveness of rocks. – Int. J. Rock Mech. Min. Sci., Geomech. Abstr., 15, pp. 8997.

    • Search Google Scholar
    • Export Citation
  • Janvier-Badosa, S., K. Beck, X. Brunetaud, M. Al-Mukhtar 2014: The occurrence of gypsum in the scaling of stones at the Castle of Chambord (France). – Environmental Earth Sciences, 71/11, pp. 47514759.

    • Search Google Scholar
    • Export Citation
  • Kahraman, S. 2001: Evaluation of simple methods for assessing the uniaxial compressive strength of rock. – Int. J. Rock Mech. Min. Sci., 38, pp. 981994.

    • Search Google Scholar
    • Export Citation
  • Magyar Útügyi Társaság 2006: Útügyi Muszaki Eloírás 813/2005 (Technical Standard of Highway Engineering 813/2005). – Magyar Útügyi Társaság, pp. 2229, 61–108. (in Hungarian)

    • Search Google Scholar
    • Export Citation
  • Martínez-Martínez, J., D. Benavente, M. Gomez-Heras, L. Marco-Castaño, M.Á. García-del-Cura 2013: Non-linear decay of building stones during freeze-thaw weathering processes. – Construction and Building Materials, 38, pp. 443454.

    • Search Google Scholar
    • Export Citation
  • MSZ 1991:1960. Természetes építokövek vizsgálati módszerei (Testing Methods of Natural Dimension Stones). – MSZ EN 12371:2002. (in Hungarian)

    • Search Google Scholar
    • Export Citation
  • Orbán, Z. 2006: Condition assessment and rehabilitation of masonry arch railway bridges. – Concrete Structures, 7, pp. 2230.

  • Prikryl R. 2007: Understanding the Earth scientist’s role in the pre-restoration research of monuments: an overview. – In: Prikryl R., B.J. Smith (Eds): Building Stone Decay: From Diagnosis to Conservation. Geological Society, London, Special Publications, 271, pp. 921.

    • Search Google Scholar
    • Export Citation
  • Prikryl, R., A. Štastná 2010: Contribution of clayey–calcareous silicite to the mechanical properties of structural mortared rubble masonry of the medieval Charles Bridge in Prague (Czech Republic). – Engineering Geology, 115, pp. 257267.

    • Search Google Scholar
    • Export Citation
  • Prikryl, R., J. Svobodová, P. Siegel, M. Chvátal, M. Novotná, R.A. Sanchez, M. Mézlová, K. Mysková, J. Faltus, J. Korecky 2002: Weathering of limestone cladding above the waterproofing layer: salt action due to previous restoration of Colonade (Valtice-Lednice area, Czech Republic). – In: Prikryl, R., H. Viles (Eds): Understanding and Managing Stone Decay. Carolinum Press, Prague, pp. 209221.

    • Search Google Scholar
    • Export Citation
  • Prikryl R. , Z. Weishauptová, M. Novotná, J. Prikrylová, Štastná A. 2010: Physical and mechanical properties of the repaired sandstone ashlars in the facing masonry of the Charles Bridge in Prague (Czech Republic) and an analytical study for the causes of its rapid decay. – Environmental Earth Sciences, 63, pp. 16231639.

    • Search Google Scholar
    • Export Citation
  • Schafarzik, F. 1904: A magyar szent korona országainak területén létezo kobányák (Stone Quarries in Historical Hungary). – Franklin Társulat Könyvnyomdája, Budapest. (in Hungarian)

    • Search Google Scholar
    • Export Citation
  • Smith, B.J., A.V. Turkington, P.A. Warke, P.A.M. Basheer, J.J. McAlister, J. Menleely, J.M. Curran 2002: Modelling rapid retreat of building sandstones. A case study from a polluted maritime environment. – In: Siegesmund, S., T.S. Weiss, A. Vollbrecht (Eds): Natural Stones, Weathering Phenomena, Conservation Strategies and Case Studies. Geological Society Special Publications, 205, pp. 339354.

    • Search Google Scholar
    • Export Citation
  • Turkington, A.V., T.R. Paradise 2005: Sandstone weathering: a century of research and innovation. – Geomorphology, 67/1–2, pp. 229253.

    • Search Google Scholar
    • Export Citation
  • Török, Á. 2002: Oolitic limestone in a polluted atmospheric environment in Budapest: weathering phenomena and alterations in physical properties. – Geological Society, London, Special Publications, 205/1, pp. 363379.

    • Search Google Scholar
    • Export Citation
  • Török, Á. 2003: Surface strength and mineralogy of weathering crusts on limestone buildings in Budapest. – Building and Environment, 38, pp. 11851192.

    • Search Google Scholar
    • Export Citation
  • Török Á. 2007: Morphology and detachment mechanism of weathering crusts of porous limestone in the urban environment of Budapest. – Central European Geology, 50/3, pp. 225240.

    • Search Google Scholar
    • Export Citation
  • Török, Á., N. Rozgonyi, R. Prikryl, J. Prikrylová 2004: Leithakalk: the ornamental and building stone of Central Europe, an overview. – In: Prikryl, R. (Ed.), Dimension Stone. Balkema, Rotterdam, pp. 8993.

    • Search Google Scholar
    • Export Citation
  • Török, Á., T. Licha, K. Simon, S. Siegesmund 2011: Urban and rural limestone weathering; the contribution of dust to black crust formation. – Environmental Earth Sciences, 63, pp. 675693.

    • Search Google Scholar
    • Export Citation
  • Vásárhelyi, B. 2005: Statistical analysis of the influence of water content on the strength of Miocene limestone. – Rock Mechanics and Rock Engineering, 38/1, pp. 6976.

    • Search Google Scholar
    • Export Citation
  • Warke, P., J. McKinley, J.B. Smith 2006: Variable weathering response in sandstone: factors controlling decay sequences. – Earth Surface Processes and Landforms, 31/6, pp. 715735.

    • Search Google Scholar
    • Export Citation
  • Yasar, E., Y. Erdogan 2004: Estimation of rock physiomechanical properties using hardness methods. – Engineering Geology, 71, pp. 281288.

    • Search Google Scholar
    • Export Citation
  • Yershov, E.D. 2004: General Geocryology. – Cambridge University Press, Cambridge, 280 p.

  • Yilmaz, I., H. Sendir 2002: Correlation of Schmidt hardness with unconfined compressive strength and Young’s modulus in gypsum from Sivas (Turkey). – Engineering Geology, 66, pp. 211219.

    • Search Google Scholar
    • Export Citation
  • Yu, S., C.T. Oguchi 2010: Role of pore size distribution in salt uptake, damage, and predicting salt susceptibility of eight types of Japanese building stones. – Engineering Geology, 115, pp. 226236.

    • Search Google Scholar
    • Export Citation
  • Zhang, L. 2005: Engineering properties of rocks. – Elsevier Geo-Engineering Book Series, 4, pp. 178181.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2020 0 2 11
Nov 2020 0 20 14
Dec 2020 0 3 7
Jan 2021 0 6 16
Feb 2021 0 11 6
Mar 2021 0 8 4
Apr 2021 0 1 2