The Mócs chondrite was studied by optical microscopy, element mapping, as well as scanning electron microscope backscattered electron (SEM—BSE) imaging, in order to gain a better understanding of the thermal metamorphic as well as post-shock annealing evolution and the mineralogical signatures in this meteorite. The studied thin section of Mócs meteorite contains 26 chondrules with a variety of chondrule textures, which are characterized by a blurry rim. The chondrules mostly consist of pyroxene and olivine, whereas feldspars occur only in the recrystallized groundmass, chondrule mesostasis, and mineral melt inside and beyond the shock veins. It was found that the matrix was completely recrystallized. According to the scanning electron microscope and optical microscope observations mentioned above, it can be concluded that the Mócs chondrite is a 6.5 petrographic type.
Bérczi, Sz. 2000: Kis atlasz a Naprendszerrol (1): Planetáris és anyagtérképek a holdkozetekrol és meteoritekrol (Concise atlas of the Solar System: Planetary and material mapping of the lunar rocks and meteorites). — Budapest, Hungary. (in Hungarian)
Bérczi, Sz., S. Józsa, Zs. Kovács, B. Lukács, Gy. Szakmány 2004: Studies of thermal evolution of a chondritic asteroidal body: Synthesis from Antarctic meteorite thin section set of the National Institute of Polar Research, Tokyo. — Acta Mineralogica Petrographica 45/2, pp. 55–60.
Boyd, F.R., J.L. England 1965: The rhombic enstatite-clinoenstatite inversion. – Carnegie Institution of Washington Year Book 64, pp. 117–120.
Dodd, R.T. 1969: Metamorphism of the ordinary chondrites: A review. – Geochimica et Cosmochimica Acta 33, pp. 161–203.
Dodd, R.T., J.E. Grover, G.E. Brown 1975: Pyroxenes in the Shaw (L-7) chondrite. – Geochimica et Cosmochimica Acta 39, pp. 1585–1594.
Ferko, T.E., L. Schultz, L. Franke, D.D. Bogard, D.H. Garrison, R. Hutchison, M.E. Lipschutz 2000: Exposure history of the Mócs (L6) chondrite: A study of strewn field samples. – Meteoritics and Planetary Science 35/6, pp. 1215–1227.
Greenwood, R.C., B. Schmitz, J.C. Bridges, R. Hutchison, I.A. Franchi 2007: Disruption of the L chondrite parent body: New oxygen isotope evidence from Ordovician relict chromite grains. – Earth and Planetary Science Letters 262/1–2, pp. 204–213.
Gyollai, I., K. Fintor, Sz. Nagy, Sz. Bérczi, A. Gucsik, M. Veres in press: Characteristic shock-induced microstructures in Mócs meteorite (L6) revealed by Micro-Raman Spectroscopy. – Planetary and Space Science.
Haack, H., P. Farinella, E.R. Scott, K. Keil 1996: Meteorite, asteroidal, and theoretical constraints on the 500-Ma disruption of the L chondrite parent body. – Icarus 119, pp. 182–191.
Huss, G.R., A.E. Rubin, J.N. Grossman 2006: Thermal Metamorphism in Chondrites. – In: Lauretta, D.S., H.Y. McSween(Eds): Meteorites and the Early Solar System II (Space Science Series), University of Arizona Press, Tucson, pp. 565–586.
Korochantseva, E.V., M. Trieloff, C.A. Lorenz, A.I. Buykin, M.A. Ivanova, W.H. Schwarz, E.K. Jessberger 2007: L-chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar–39Ar dating. – Meteoritics and Planetary Science 42, pp. 113–130.
Kubovics, I., B. Lukács, Sz. Bérczi, K. Gál-Sólymos, A. Kiss, G. Albert, B. Gellért, Cs. Detre 1997: Iron grain size distribution in an L sequence of chondrites from Hungary: Mezomadaras (L3), Knyahinya (L5) and Mócs (L6). – TISS Conference Abstracts, Tokyo, pp. 13–14.
Kubovics, I., Z. Ditrói-Puskás, K. Gál-Sólymos 2004: Re-evolution of meteorites from the Carpathian Basin: Preliminary results from Kisvarsány, Knyahinya, Mezomadaras, Mike, Mócs and Nyírábrány. – Acta Geologica Hungarica 47/2–3, pp. 269–285.
Mittlefehldt, D.W., M.M. Lindstrom 2001: Petrology and geochemistry of Patuxent Range 91501, a clast-poor impact melt from the L-chondrite parent body and Lewis Cliff 88663, an L7 chondrite. – Meteoritics and Planetary Science 36, pp. 439–457.
Miura, Y., G.O. Iancu, G. Iancu, K. Yanai, H. Haramura 1995: Reexamination of Mocs and Tauti chondritic meteorites: classification with shock degree. – Proceedings of NIPR Symposium on Antarctic Meteorites 8, pp. 153–166
Nesvorný, D., A. Morbidelli, D. Vokrouhlický, W.F. Bottke, M. Brož 2002: The Flora family: A case of the dynamically dispersed collisional swarm? – Icarus, 157, pp. 155–172.
Nesvorný, D., D. Vokrouhlický, A. Morbidelli, W.F. Bottke 2009: Asteroidal source of L chondrite meteorites. – Icarus 200/2, pp. 698–701.
Rubin, A.E. 2003: Chromite-plagioclase assemblages as a new shock indicator; implications for the shock and thermal histories of ordinary chondrites. – Geochimica et Cosmochimica Acta 67, pp. 2695–2709.
Rubin, A.E., F. Ulff-Møller, J.T. Wasson, W.D. Carlson 2001: The Portales Valley meteorite breccia: Evidence for impact-induced melting and metamorphism of an ordinary chondrite. – Geochimica et Cosmochimica Acta 65, 323–342.
Russell, S.S., G.J. MacPherson, L.A. Leshin, K.D. McKeegan 2000: 16O enrichments in aluminum-rich chondrules from ordinary chondrites. – Earth and Planetary Science Letters 184, pp. 57–74.
Stöffler, D., K. Keil, E.R.D. Scott 1991: Shock metamorphism of ordinary chondrites. – Geochimica et Cosmochica Acta 55, pp. 3845–3867.
van Drongelen, K., K. Tait, G. Clark, P. McCausland 2010: Petrographic and geochemical analysis of the Shelburne meteorite, an L5 ordinary-chondrite fall. – Journal of the Royal Astronomical Society of Canada 104/4, 132 p.
van Schmus, W.R., J.A. Wood, 1967: A chemical-petrologic classification for the chondritic meteorites. – Geochimica et Cosmochimica Acta 31, pp. 747-765.
Xie, X., M. Chen, C. Dai, A. El Goresy 2000: Characteristics in naturally and experimentally shocked chondrites: A clue to PT conditions of impacted asteroids. – Science in China, Series D: Earth Sciences 43/5, pp. 480–486.