The paper provides information on the mechanical properties of granitic rocks that were subjected to heat. Two types of granitic rocks were tested under laboratory conditions at temperatures of 23 °C, 300 °C and 600 °C. The granitic rock from Bátaapáti (Mórágy Granite) is a pinkish leucocratic monzogranitic type while the second type is grey granite from Mauthausen (Austria). The samples were placed in furnace and temperature raised to 300 °C. Other set of samples were heated to 600 °C. Mechanical tests were performed on non-heated and heated samples and the test results were compared. Heating to 300 °C caused a slight increase in the uniaxial compressive strength and in indirect tensile strength, with reference to the samples kept at 23 °C. A drastic drop in both values was observed when samples were heated to 600 °C. The density of the samples did not show a major change up to 300 °C. On the contrary, a decrease in ultrasonic pulse velocity was observed, with an additional significant loss when samples subjected to 600 °C were compared to the reference samples of 23 °C. This decrease can be related to the initiation of micro-cracks. With increasing temperature the Young modulus of both granites was reduced.
Balla, Z., G. Császár, Z. Gulácsi, L. Gyalog, M. Kaiser, E. Király, L. Koloszár, B. Koroknai, Á. Magyari, Gy. Maros, I. Marsi, P. Molnár, Á. Rotárn-Szalkai, Gy. Tóth 2009: A Mórágyi-rög északkeleti részének földtana. Magyarázó a Mórágyi-rög ÉK-i részének földtani térképsorozatához; 1:10 000 (Geology of the north-eastern part of the Mórágy Block. Explanatory notes to the geological mapseries of the north-eastern part of the Mórágy Block; 1:10,000). – Geological Institute of Hungary, Budapest, 216 p. (in Hungarian)
Breiter, K. 2010: Geochemical classification of Variscan Granitoids in the Moldanubicum (Czech Republic, Austria). – Abh. Geologischen Bundesanstalt, Austria 65, pp. 19–25.
Dwivedi, R.D., R.K. Goel, V.V.R. Prasad, A. Sinha 2008: Thermo-mechanical properties of Indian and other granites. – International Journal of Rock Mechanics and Mining Sciences 45/3, pp. 303–315.
Gálos, M., B. Vásárhelyi 2006: Kozettestek osztályozása az építomérnöki gyakorlatban (Classsification of rock bodies in civil engineering practice). – Muegyetemi Kiadó, Budapest, 144 p. (in Hungarian)
Gyalog, L., J. Füri, J. Borsody, Gy. Maros, Sz. Pásztor 2010: Geological mapping of the Bátaapáti tunnels. – Ann. Rep. Geol. Inst. Hung. 2009, pp. 305–322.
Heuze, F.E. 1983: High-temperature mechanical, physical and thermal properties of granitic rocks, a review. – International Journal of Rock Mechanics and Mining Sciences & Geomechanics 20/1, pp. 3–10.
Hodgkinson, D.P., P.J. Bourke 1980: Initial assessment of the thermal stresses around a radioactive waste depository in hard rock. – Annals of Nuclear Energy 7/10, pp. 541–552.
Maros, Gy., B. Koroknai, K. Palotás, B. Musitz, J. Füri, J. Borsody, P. Kovács-Pálfy, P. Kónya, I. Viczián, K Balogh, Z. Pécskay 2010: Brittle fault zones in the Mórágy Granite (South Transdanubia): New structural and K–Ar data. – Ann. Rep. Geol. Inst. Hung. 2009, pp. 91–112.
Russo, S., F. Sciarretta 2013: Masonry exposed to high temperatures: mechanical behaviour and properties, an overview. – Fire Safety Journal 55, pp. 69–86.
Török A. , P. Görög, Á. Török 2013: Ho hatására bekövetkezo kozetfizikai változások gránitos kozetkörnyezetben. (Heat generated petrophysical changes in granitic rock masses). – In: Nagy, L., A. Takács (Eds): 3rd Kézdi Congress, Budapest University of Technology and Economics, Budapest, pp. 49–62. (in Hungarian)