View More View Less
  • 1 Department of Mathematics, , Kent State University, New Philadelphia, OH 44663, , USA
  • | 2 Qassim University, , Buraidah-51452, P.O. Box 6688, , Saudi Arabia
Open access

The purpose of this paper is to study the principal fibre bundle (P, M, G, πp ) with Lie group G, where M admits Lorentzian almost paracontact structure (Ø, ξp, ηp, g) satisfying certain condtions on (1, 1) tensor field J, indeed possesses an almost product structure on the principal fibre bundle. In the later sections, we have defined trilinear frame bundle and have proved that the trilinear frame bundle is the principal bundle and have proved in Theorem 5.1 that the Jacobian map π* is the isomorphism.

  • [1]

    Bishop, R. L., and Critterdon, R. J. Geometry of manifolds, vol. XV. Academic Press, New York-London, 1964.

  • [2]

    Boothby, M. M., and Wong, R. C. On contact manifolds. Ann. of Math 68 (1958), 391404.

  • [3]

    Das, L., and Nivas, R. On certain structures defined on the tangent bundle. Rocky Mountain Journal of Mathematics 36 (2006), 885892.

  • [4]

    Kasper, U. Fibre bundles: An introduction to concepts of modern differential geometry. In Geometry and Theoretical Physics, J.Debrus and A. C., Hirshfeld, Eds. Springer, Berlin, Heidelberg, 1991.

    • Search Google Scholar
    • Export Citation
  • [5]

    Khan, M. N. I., and Jun, J. B. Lorentzian almost r-para-contact structure in tangent bundle.Journal of the Chungcheong Mathematical Society 27 (2014), 2934.

    • Search Google Scholar
    • Export Citation
  • [6]

    Kobayashi, S., and Nomizu, K. Foundations of Differential Geometry. Inter Science Publishers, John Wiley and Sons, New York, 1963.

  • [7]

    Koyabashi, S. Principal bundles with the 1-dimensional toroidal group. Tohoku Math. J. 8(1956), 2945.

  • [8]

    Matsumoto, K. On lorentzian paracontact manifolds. Bull. of Yamagata Univ. Nat. Sci. 12(1989), 151156.

  • [9]

    Taleb, K. Almost product structure in principal fibre bundle over almost para contact manifolds.J. Univ. Kuwait Science 16 (1989), 215220.

    • Search Google Scholar
    • Export Citation
  • [10]

    Warner, F. W. Foundations of Differentiable Manifolds and Lie Groups. Springer-Verlag, New York, 1971.

The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)