Author:
Jaydeep Chipalkatti Department of Mathematics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada

Search for other papers by Jaydeep Chipalkatti in
Current site
Google Scholar
PubMed
Close
Open access

This paper solves an enumerative problem which arises naturally in the context of Pascal’s hexagram. We prove that a general Desargues configuration in the plane is associated to six conical sextuples via the theorems of Pascal and Kirkman. Moreover, the Galois group associated to this problem is isomorphic to the symmetric group on six letters.

  • [1]

    Adams, W., and Loustaunau, P. An Introduction to Gröbner Bases, vol. 3 of Graduate Studies in Mathematics. American Mathematical Society, 1994.

    • Search Google Scholar
    • Export Citation
  • [2]

    Avritzer, D., and Lange, H. Curves of genus 2 and Desargues configurations. Adv. Geom. 2 (2002), 259280.

  • [3]

    Baker, H. F.Principles of Geometry, vol. II. Cambridge University Press, 1923.

  • [4]

    Chipalkatti, J. On the coincidences of Pascal lines. Forum. Geom. 16 (2016), 121.

  • [5]

    Conway, J., and Ryba, A. The Pascal mysticum demystified. Math. Intelligencer 34,3(2012), 48.

  • [6]

    Cox, D., Little, J., and O’Shea, D. Ideals, Varieties and Algorithms, 3rd ed. Undergraduate Texts in Mathematics. Springer, 2007.

  • [7]

    Coxeter, H. S. M. Desargues configurations and their collineation groups. Math. Proc. Camb. Phil. Soc. 78 (1975), 227246.

  • [8]

    Coxeter, H. S. M.Projective Geometry. Springer-Verlag, 1987.

  • [9]

    Grace, J. H., and Young, A.The Algebra of Invariants. Reprinted by Chelsea Publishing Co., New York, 1962.

  • [10]

    Griffiths, P., and Harris, J.Principles of Algebraic Geometry. John Wiley and Sons, 1994.

  • [11]

    Harris, J., and Morrison, I. Moduli of Curves. Graduate Texts in Mathematics. Springer, 1998.

  • [12]

    Howard, B., Millson, J., Snowden, A., and Vakil, R. Adescription of the outer automorphism of S6, and the invariants of six points in projective space. J. Combin. Theory Ser. A 115,7(2008), 12961303.

    • Search Google Scholar
    • Export Citation
  • [13]

    Maier, K. Die Desarguessche Konfiguration. Deutsche Math. 4 (1939), 591641.

  • [14]

    Olver, P.Classical Invariant Theory. London Mathematical Society Student Texts, No. 44. Cambridge University Press, 1999.

  • [15]

    Pedoe, D.How many Pascal lines has a sixpoint? The Mathematical Gazette 25, 264 (1941), 110111.

  • [16]

    Salmon, G. A Treatise on Conic Sections. Reprint of the 6th ed. by Chelsea Publishing Co., New York, 2005.

  • [17]

    Seidenberg, A. Lectures in Projective Geometry. D. Van Nostrand Company, New York, 1962.

  • [18]

    Sylvester, J. J. Note on the . . . six-valued function of six letters. In Collected Mathematical Papers, vol. II. Cambridge University Press, 1904–1912, pp. 264271.

    • Search Google Scholar
    • Export Citation
  • [19]

    Van der Waerden, B. L. Modern Algebra, vol. I. Springer, 1940.

  • [20]

    Veronese, G. Nuovi teoremi sull’hexagrammum mysticum. Atti della Reale Accademie dei Lincei I (1877), 649703.

  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • † Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)