Authors:
Ákos Beke Institute of Mathematics and Informatics, University of Pécs, Ifjúság u. 6, 7624 Pécs, Hungary

Search for other papers by Ákos Beke in
Current site
Google Scholar
PubMed
Close
,
Sándor Szabó Institute of Mathematics and Informatics, University of Pécs, Ifjúság u. 6, 7624 Pécs, Hungary

Search for other papers by Sándor Szabó in
Current site
Google Scholar
PubMed
Close
, and
Bogdán Zavalnij Institute of Mathematics and Informatics, University of Pécs, Ifjúság u. 6, 7624 Pécs, Hungary

Search for other papers by Bogdán Zavalnij in
Current site
Google Scholar
PubMed
Close
Open access

Many combinatorial optimization problems can be expressed in terms of zero-one linear programs. For the maximum clique problem the so-called edge reformulation is applied most commonly. Two less frequently used LP equivalents are the independent set and edge covering set reformulations. The number of the constraints (as a function of the number of vertices of the ground graph) is asymptotically quadratic in the edge and the edge covering set LP reformulations and it is exponential in the independent set reformulation, respectively. F. D. Croce and R. Tadei proposed an approach in which the number of the constraints is equal to the number of the vertices. In this paper we are looking for possible tighter variants of these linear programs.

  • [1]

    Bomze, I. M., Budinich, M., Pardalos, P. M., and Pelillo, M. The Maximum Clique Problem,Handbook of Combinatorial Optimization, vol. 4. Kluwer Academic Publisher, 1999.

    • Search Google Scholar
    • Export Citation
  • [2]

    Carraghan, R., and Pardalos, P. M. An exact algorithm for the maximum-clique problem.Operation Research Letters 9 (1990), 375382.

  • [3]

    Croce, F. D., and Tadei, R. A multi-kp modelling for the maximum-clique problem. EuropeanJournal of Operational Research 73 (1994), 555561.

    • Search Google Scholar
    • Export Citation
  • [4]

    Garey, M. R., and Johnson, D. S. Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, New York, 2003.

  • [5]

    Hasselberg, J., Pardalos, P. M., and Vairaktarakis, G. Test case generators and computational results for the maximum clique problem. Journal of Global Optimization 3 (1993), 463482. http://www.springerlink.com/content/p2m65n57u657605n.

    • Search Google Scholar
    • Export Citation
  • [6]

    Karteszi, F. Introduction to Finite Geometries. North-Holland Pub. Co., Amsterdam, 1976.

  • [7]

    Konc, J., and Janezic, D. An improved branch and bound algorithm for the maximum clique problem. MATCH Communications in Mathematical and Computer Chemistry 58 (2007), 569590.

    • Search Google Scholar
    • Export Citation
  • [8]

    Kumlander, D. Some Practical Algorithms to Solve the Maximal Clique Problem. PhD thesis, Tallin University of Technology, 2005.

  • [9]

    Östergard, P. R. J. A fast algorithm for the maximum clique problem. Discrete Applied Mathematics 120 (2002), 197207.

  • [10]

    Papadimitriou, C. H. Addison-Wesley Publishing Company, Inc., Reading, MA, 1994.

  • [11]

    Tomita, E., and Seki, T. An efficient branch-and-bound algorithm for finding a maximum clique. In Lecture Notes in Computer Science, vol. 2631. 2003, pp. 278289.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • † István GYŐRI, University of Pannonia, Veszprém, Hungary
  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)