Author:
Walter Wenzel Universität Leipzig, Mathematisches Institut, Augustusplatz 10, 04109 Leipzig, Germany

Search for other papers by Walter Wenzel in
Current site
Google Scholar
PubMed
Close
Open access

Infinite matroids have been defined by Reinhard Diestel and coauthors in such a way that this class is (together with the finite matroids) closed under dualization and taking minors. On the other hand, Andreas Dress introduced a theory of matroids with coefficients in a fuzzy ring which is – from a combinatorial point of view – less general, because within this theory every circuit has a finite intersection with every cocircuit. Within the present paper, we extend the theory of matroids with coefficients to more general classes of matroids, if the underlying fuzzy ring has certain properties to be specified.

  • [1]

    Bland, R. G., and Vergnas, M. L. Orientability of matroids. J. Combin. Theory Ser. B 24 (1978),94123.

  • [2]

    Borujeni, H. A., and Bowler, N. Thin sums matroids and duality. Adv. Math. 271 (2015), 129.

  • [3]

    Bowler, N., and Carmesin, J. Matroids with an infinite circuit-cocircuit intersection. J. Combin. Theory Ser. B 107 (2014), 7891.

  • [4]

    Bruhn, H., Diestel, R., Kriesell, M., Pendavingh, R., and Wollan, P. Axioms for infinite matroids. Adv. Math. 239 (2013), 1846.

  • [5]

    Dress, A. W. M. Chirotopes and oriented matroids. Bayreuth. Math. Schr. 21 (1985), 1468. Tagungsbericht 2. Sommerschule Diskrete Strukturen Bayreuth.

    • Search Google Scholar
    • Export Citation
  • [6]

    Dress, A. W. M. Duality theory for finite and infinite matroids with coefficients. Adv. Math. 59 (1986), 97123.

  • [7]

    Dress, A. W. M., and Wenzel, W. Geometric algebra for combinatorial geometries. Adv. Math. 77 (1989), 136.

  • [8]

    Dress, A.W. M., and Wenzel, W. Grassmann-plücker relations and matroids with coefficients. Adv. Math. 86 (1991), 68110.

  • [9]

    Dress, A. W. M., and Wenzel, W. Valuated matroids. Adv. Math. 93 (1992), 214250.

  • [10]

    Gutierrez Novoa, L. On n-ordered sets and order completeness. Pacific J. Math. 15 (1965), 13371345.

  • [11]

    Oxley, J. Matroid Theory. Oxford University Press, Oxford, 1992.

  • [12]

    Wagowski, M. Matroid signatures coordinatizable over a semiring. European J. Combin. 10 (1989), 393398.

  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • † Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)