View More View Less
  • 1 Universität Leipzig, , Mathematisches Institut, Augustusplatz 10, 04109 Leipzig, , Germany
Open access

Infinite matroids have been defined by Reinhard Diestel and coauthors in such a way that this class is (together with the finite matroids) closed under dualization and taking minors. On the other hand, Andreas Dress introduced a theory of matroids with coefficients in a fuzzy ring which is – from a combinatorial point of view – less general, because within this theory every circuit has a finite intersection with every cocircuit. Within the present paper, we extend the theory of matroids with coefficients to more general classes of matroids, if the underlying fuzzy ring has certain properties to be specified.

  • [1]

    Bland, R. G., and Vergnas, M. L. Orientability of matroids. J. Combin. Theory Ser. B 24 (1978),94123.

  • [2]

    Borujeni, H. A., and Bowler, N. Thin sums matroids and duality. Adv. Math. 271 (2015), 129.

  • [3]

    Bowler, N., and Carmesin, J. Matroids with an infinite circuit-cocircuit intersection. J. Combin. Theory Ser. B 107 (2014), 7891.

  • [4]

    Bruhn, H., Diestel, R., Kriesell, M., Pendavingh, R., and Wollan, P. Axioms for infinite matroids. Adv. Math. 239 (2013), 1846.

  • [5]

    Dress, A. W. M. Chirotopes and oriented matroids. Bayreuth. Math. Schr. 21 (1985), 1468. Tagungsbericht 2. Sommerschule Diskrete Strukturen Bayreuth.

    • Search Google Scholar
    • Export Citation
  • [6]

    Dress, A. W. M. Duality theory for finite and infinite matroids with coefficients. Adv. Math. 59 (1986), 97123.

  • [7]

    Dress, A. W. M., and Wenzel, W. Geometric algebra for combinatorial geometries. Adv. Math. 77 (1989), 136.

  • [8]

    Dress, A.W. M., and Wenzel, W. Grassmann-plücker relations and matroids with coefficients. Adv. Math. 86 (1991), 68110.

  • [9]

    Dress, A. W. M., and Wenzel, W. Valuated matroids. Adv. Math. 93 (1992), 214250.

  • [10]

    Gutierrez Novoa, L. On n-ordered sets and order completeness. Pacific J. Math. 15 (1965), 13371345.

  • [11]

    Oxley, J. Matroid Theory. Oxford University Press, Oxford, 1992.

  • [12]

    Wagowski, M. Matroid signatures coordinatizable over a semiring. European J. Combin. 10 (1989), 393398.

The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)
     

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Publication
Programme
2021 Volume 27 /N.S. 1/
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)