Let X be a topological space. For any positive integer n, we consider the n-fold symmetric product of X, ℱn(X), consisting of all nonempty subsets of X with at most n points; and for a given function ƒ : X → X, we consider the induced functions ℱn(ƒ): ℱn(X) → ℱn(X). Let M be one of the following classes of functions: exact, transitive, ℤ-transitive, ℤ+-transitive, mixing, weakly mixing, chaotic, turbulent, strongly transitive, totally transitive, orbit-transitive, strictly orbit-transitive, ω-transitive, minimal, I N, T T++, semi-open and irreducible. In this paper we study the relationship between the following statements: ƒ ∈ M and ℱn(ƒ) ∈ M.
Akin, E. The General Topology of Dynamical Systems, vol. 1. American Mathematical Society, Providence, 1993.
Akin, E., and Carlson, J. Conceptions of topological transitivity. Topology and its Applications 159 (2012), 2815–2830. doi:.
Auslander, J., Greschonig, G., and Nagar, A. Reflections on equicontinuity. Proceedings of the American Mathematical Society 142 (2014), 3129–3137. doi:.
Banks, J. Topological mapping properties defined by digraphs. Discrete&Continuous Dynamical Systems 5 (1999), 83–92. doi:.
Banks, J. Chaos for induced hyperspace maps. Chaos, Solitons & Fractals 25 (2005), 681–685.doi:.
Barragan, F., Macias, S., and Tenorio, J. More on induced maps on n-fold symmetric product suspensions. Glasnik Matematicki 50 (2015), 489–512. doi:.
Barragan, F., Santiago, A., and Tenorio, J. F. Dynamic properties for the induced maps on n-fold symmetric product suspensions. Glasnik Matematicki 51 (2016), 453–474. doi:.
Bauer, W., and Sigmund, K. Topological dynamics of transformations induced on the space of probability measures. Monatshefte für Mathematik 79 (1975), 81–92. doi:.
Bilokopytov, E., and Kolyada, S. Transitive maps on topological spaces. Ukrainian Mathematical Journal 65 (2014), 1293–1318. doi:.
Birkhoff, G. Dynamical Systems, vol. 9. American Mathematical Society, Providence, 1927.
Borsuk, K., and Ulam, S. On symmetric products of topological space. Bulletin of the American Mathematical Society 37 (1931), 875–882. doi:.
Brown, T., and Comfort, W. New method for expansion and contraction maps in uniform spaces. Proceedings of the American Mathematical Society 11 (1960), 483–486. doi:.
Bryant, B. On expansive homeomorphisms. Pacific Journal of Mathematics 10 (1960), 1163–1167.
Fernandez, L., Good, C., and M. Puljiz, Á. R. Chain transitivity in hyperspaces. Chaos, Solitons & Fractals 81 (2015), 83–90. doi:.
Furstenberg, H. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Mathematical systems theory 1 (1967), 1–49. doi:.
Gomez, J., Illanes, A., and Mendez, H. Dynamic properties for the induced maps in the symmetric products. Chaos Solitons & Fractals 45 (2012), 1180–1187. doi:.
Good, C., and Macias, S. Symmetric products of generalized metric spaces. Topology and its Applications 206 (2016), 93–114. doi:.
Good, C., and Macias, S. What is topological about topological dynamics? Discrete & Continuous Dynamical Systems-A 38 (2018), 1007–1031. doi:.
Gotschalk, W., and Hedlun, G. Topological Dynamics, vol. 36. American Mathematical= Society, Providence, 1955.
Higuera, G., and Illanes, A. Induced mappings on symmetric products. Topology Proceedings 37 (2011), 367–401.
Hood, B. Topological entropy and uniform spaces. Journal of the London Mathematical Society 8 (1974), 633–641. doi:.
Illanes, A., and Jr, S. N. Hyperspaces: fundamentals and recent advances, vol. 216 of Monographs and Textbooks in Pure and Applied Math. Marcel Dekker, New York, Basel, 1999.
Jr, S. N. Hyperspaces of sets, vol. 49 of Monographs and Textbooks in Pure and Applied Math. Marcel Dekker, New York, Basel, 1978. Reprinter In: Aportaciones Matemáticas, Serie Textos No. 33, Sociedad Matemática Mexicana, 2006.
Kolyada, S.Snoha, L., and Trofimchuk, S. Noninvertible minimal maps. Fundamenta Mathematicae 168 (2001), 141–163. doi:.
Kwietniak, D., and Misiurewicz, M. Exact devaney chaos and entropy. Qualitative Theory of Dynamical Systems 6 (2005), 169–179. doi:.
Kwietniak, D., and Oprocha, P. Topological entropy and chaos for maps induced on hyperspaces. Chaos, Solitons & Fractals 33 (2007), 76–86. doi:.
Lampart, M., and Raith, P. Topological entropy for set valued maps. Nonlinear Analysis 73 (2010), 1533–1537. doi:.
Li, R. A note on stronger forms of sensitivity for dynamical systems. Chaos Solitons & Fractals 45 (2012), 753–758. doi:.
Liao, G., Wang, L., and Zhang, Y. Transitivity, mixing and chaos for a class of set-valued mappings. Science in China Series A 49 (2006), 1–8. doi:.
Macias, S. Aposyndetic properties of symmetric product of continua. Topology Proceedings 22 (1997), 281–296.
Macias, S. On symmetric product of continua. Topology and its Applications 92 (1999), 173–182. doi:.
Mai, J., and Sun, W. Transitivities of maps of general topological spaces. Topology and its Applications 157 (2010), 946–953. doi:.
Martinez-Montejano, J. Mutual aposyndesis of symmetric products. Topology Proceedings 24 (1999).
Michael, E. Topologies on spaces of subsets. Transactions of the American Mathematical Society 71 (1951), 152–182. doi:.
Pena, J., and Lopez, G. Topological entropy for induced hyperspace maps. Chaos Solitons & Fractals 28 (2006), 979–982. doi:.
Peng, L., and Sun, Y. A study of symmetric products of generalized metric spaces. Topology and its Applications 231 (2017), 411–429. doi:.
Peris, A. Set-valued discrete chaos. Chaos, Solitons & Fractals 26 (2005), 19–23. doi:.
Roman-Flores, H. A note on transitivity in set-valued discrete systems. Chaos Solitons & Fractals 17 (2003), 99–104. doi:.
Sabbaghan, M., and Damerchiloo, H. A note on periodic points and transitive maps. Mathematical Sciences 5 (2011), 259–266.
Tang, Z., Lin, S., and Lin, F. Symmetric products and closed finite-to-one mappings. Topology and its Applications 234 (2018), 26–45. doi:.
Vietoris, L. Bereiche zweiter ordnung. Monatshefte für Mathematik und Physik 32 (1922), 258–280. doi:.
Wang, Y., Wei, G., and Campbell, W. Sensitive dependence on initial conditions between dynamical systems and their induced hyperspace dynamical systems. Topology and its Applications 156 (2009), 803–811. doi:.