Authors:
Franco Barragán Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, Carretera a Acatlima, Km. 2.5, Huajuapan de León, Oaxaca, C.P. 69000, México

Search for other papers by Franco Barragán in
Current site
Google Scholar
PubMed
Close
,
Sergio Macías Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, CDMX, C.P. 04510, México

Search for other papers by Sergio Macías in
Current site
Google Scholar
PubMed
Close
, and
Anahí Rojas Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, Carretera a Acatlima, Km. 2.5, Huajuapan de León, Oaxaca, C.P. 69000, México

Search for other papers by Anahí Rojas in
Current site
Google Scholar
PubMed
Close
Open access

Let X be a topological space. For any positive integer n, we consider the n-fold symmetric product of X, ℱn(X), consisting of all nonempty subsets of X with at most n points; and for a given function ƒ : XX, we consider the induced functions ℱn(ƒ): ℱn(X) → ℱn(X). Let M be one of the following classes of functions: exact, transitive, ℤ-transitive, ℤ+-transitive, mixing, weakly mixing, chaotic, turbulent, strongly transitive, totally transitive, orbit-transitive, strictly orbit-transitive, ω-transitive, minimal, I N, T T++, semi-open and irreducible. In this paper we study the relationship between the following statements: ƒM and ℱn(ƒ) ∈ M.

  • [1]

    Akin, E. The General Topology of Dynamical Systems, vol. 1. American Mathematical Society, Providence, 1993.

  • [2]

    Akin, E., and Carlson, J. Conceptions of topological transitivity. Topology and its Applications 159 (2012), 28152830. doi:.

  • [3]

    Auslander, J., Greschonig, G., and Nagar, A. Reflections on equicontinuity. Proceedings of the American Mathematical Society 142 (2014), 31293137. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [4]

    Banks, J. Topological mapping properties defined by digraphs. Discrete&Continuous Dynamical Systems 5 (1999), 8392. doi:.

  • [5]

    Banks, J. Chaos for induced hyperspace maps. Chaos, Solitons & Fractals 25 (2005), 681685.doi:.

  • [6]

    Barragan, F., Macias, S., and Tenorio, J. More on induced maps on n-fold symmetric product suspensions. Glasnik Matematicki 50 (2015), 489512. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [7]

    Barragan, F., Santiago, A., and Tenorio, J. F. Dynamic properties for the induced maps on n-fold symmetric product suspensions. Glasnik Matematicki 51 (2016), 453474. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [8]

    Bauer, W., and Sigmund, K. Topological dynamics of transformations induced on the space of probability measures. Monatshefte für Mathematik 79 (1975), 8192. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [9]

    Bilokopytov, E., and Kolyada, S. Transitive maps on topological spaces. Ukrainian Mathematical Journal 65 (2014), 12931318. doi:.

  • [10]

    Birkhoff, G. Dynamical Systems, vol. 9. American Mathematical Society, Providence, 1927.

  • [11]

    Borsuk, K., and Ulam, S. On symmetric products of topological space. Bulletin of the American Mathematical Society 37 (1931), 875882. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [12]

    Brown, T., and Comfort, W. New method for expansion and contraction maps in uniform spaces. Proceedings of the American Mathematical Society 11 (1960), 483486. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [13]

    Bryant, B. On expansive homeomorphisms. Pacific Journal of Mathematics 10 (1960), 11631167.

  • [14]

    Fernandez, L., Good, C., and M. Puljiz, Á. R. Chain transitivity in hyperspaces. Chaos, Solitons & Fractals 81 (2015), 8390. doi:.

  • [15]

    Furstenberg, H. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Mathematical systems theory 1 (1967), 149. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [16]

    Gomez, J., Illanes, A., and Mendez, H. Dynamic properties for the induced maps in the symmetric products. Chaos Solitons & Fractals 45 (2012), 11801187. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [17]

    Good, C., and Macias, S. Symmetric products of generalized metric spaces. Topology and its Applications 206 (2016), 93114. doi:.

  • [18]

    Good, C., and Macias, S. What is topological about topological dynamics? Discrete & Continuous Dynamical Systems-A 38 (2018), 10071031. doi:.

  • [19]

    Gotschalk, W., and Hedlun, G. Topological Dynamics, vol. 36. American Mathematical= Society, Providence, 1955.

  • [20]

    Hausdorff, F. Grundzuge der Mengenlehre. Leipzig, 1914.

  • [21]

    Higuera, G., and Illanes, A. Induced mappings on symmetric products. Topology Proceedings 37 (2011), 367401.

  • [22]

    Hood, B. Topological entropy and uniform spaces. Journal of the London Mathematical Society 8 (1974), 633641. doi:.

  • [23]

    Illanes, A., and Jr, S. N. Hyperspaces: fundamentals and recent advances, vol. 216 of Monographs and Textbooks in Pure and Applied Math. Marcel Dekker, New York, Basel, 1999.

    • Search Google Scholar
    • Export Citation
  • [24]

    Jr, S. N. Hyperspaces of sets, vol. 49 of Monographs and Textbooks in Pure and Applied Math. Marcel Dekker, New York, Basel, 1978. Reprinter In: Aportaciones Matemáticas, Serie Textos No. 33, Sociedad Matemática Mexicana, 2006.

    • Search Google Scholar
    • Export Citation
  • [25]

    Kolyada, S.Snoha, L., and Trofimchuk, S. Noninvertible minimal maps. Fundamenta Mathematicae 168 (2001), 141163. doi:.

  • [26]

    Kwietniak, D., and Misiurewicz, M. Exact devaney chaos and entropy. Qualitative Theory of Dynamical Systems 6 (2005), 169179. doi:.

  • [27]

    Kwietniak, D., and Oprocha, P. Topological entropy and chaos for maps induced on hyperspaces. Chaos, Solitons & Fractals 33 (2007), 7686. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [28]

    Lampart, M., and Raith, P. Topological entropy for set valued maps. Nonlinear Analysis 73 (2010), 15331537. doi:.

  • [29]

    Li, R. A note on stronger forms of sensitivity for dynamical systems. Chaos Solitons & Fractals 45 (2012), 753758. doi:.

  • [30]

    Liao, G., Wang, L., and Zhang, Y. Transitivity, mixing and chaos for a class of set-valued mappings. Science in China Series A 49 (2006), 18. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [31]

    Macias, S. Aposyndetic properties of symmetric product of continua. Topology Proceedings 22 (1997), 281296.

  • [32]

    Macias, S. On symmetric product of continua. Topology and its Applications 92 (1999), 173182. doi:.

  • [33]

    Macias, S. Topics on Continua, 2 ed. Springer, 2018.

  • [34]

    Mai, J., and Sun, W. Transitivities of maps of general topological spaces. Topology and its Applications 157 (2010), 946953. doi:.

  • [35]

    Martinez-Montejano, J. Mutual aposyndesis of symmetric products. Topology Proceedings 24 (1999).

  • [36]

    Michael, E. Topologies on spaces of subsets. Transactions of the American Mathematical Society 71 (1951), 152182. doi:.

  • [37]

    Pena, J., and Lopez, G. Topological entropy for induced hyperspace maps. Chaos Solitons & Fractals 28 (2006), 979982. doi:.

  • [38]

    Peng, L., and Sun, Y. A study of symmetric products of generalized metric spaces. Topology and its Applications 231 (2017), 411429. doi:.

  • [39]

    Peris, A. Set-valued discrete chaos. Chaos, Solitons & Fractals 26 (2005), 1923. doi:.

  • [40]

    Roman-Flores, H. A note on transitivity in set-valued discrete systems. Chaos Solitons & Fractals 17 (2003), 99104. doi:.

  • [41]

    Sabbaghan, M., and Damerchiloo, H. A note on periodic points and transitive maps. Mathematical Sciences 5 (2011), 259266.

  • [42]

    Tang, Z., Lin, S., and Lin, F. Symmetric products and closed finite-to-one mappings. Topology and its Applications 234 (2018), 2645. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [43]

    Vietoris, L. Bereiche zweiter ordnung. Monatshefte für Mathematik und Physik 32 (1922), 258280. doi:.

  • [44]

    Wang, Y., Wei, G., and Campbell, W. Sensitive dependence on initial conditions between dynamical systems and their induced hyperspace dynamical systems. Topology and its Applications 156 (2009), 803811. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • † István GYŐRI, University of Pannonia, Veszprém, Hungary
  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)