View More View Less
  • 1 Institute of Mathematics and Informatics, University of Pécs, Ifjúság u. 6, 7624 Pécs, Hungary
Open access

In many clique search algorithms well coloring of the nodes is employed to find an upper bound of the clique number of the given graph. In an earlier work a non-traditional edge coloring scheme was proposed to get upper bounds that are typically better than the one provided by the well coloring of the nodes. In this paper we will show that the same scheme for well coloring of the edges can be used to find lower bounds for the clique number of the given graph. In order to assess the performance of the procedure we carried out numerical experiments.

  • [1]

    Çatalzurek, Ü. V., Feo, J., Gebremedhin, A. H., Halappanavar, M., and Pothen, A. Graph coloring algorithms for multi-core and massively multi threaded architectures. Parallel Comp. 38 (2012), 576594.

    • Search Google Scholar
    • Export Citation
  • [2]

    Leighton, F. T.A graph coloring algorithm for large scheduling problems. Journal of Research of National Bureau of Standards 84 (1979), 489506.

    • Search Google Scholar
    • Export Citation
  • [3]

    Matula, D. W., Marble, G., and Isaacson, J. Graph coloring algorithms. In Graph Theory and Computing, R. Read, Ed Academic Press, 1972, pp. 109122.

    • Search Google Scholar
    • Export Citation
  • [4]

    Papadimitriou, C. H. Computational Complexity. Addison-Wesley Publishing Company, Inc., Reading, MA, 1994.

  • [5]

    Sloane, N. J. A. Challenge problems: Independent sets in graphs. http://neilsloane.com/doc/graphs.html.

  • [6]

    Szabo, S. Parallel algorithms for finding cliques in a graph. Journal of Physics, Conference Series 268 (2011), 012030. doi:.

  • [7]

    Szabo, S. Monoton matrices and finding cliques in a graph. Annales Univ. Sci. Budapest., Sect. Computatorica 41 (2013), 307322.

  • [8]

    Weisstein, E. W. Monotonic matrix. in MathWorld–A Wolfram Web Resource.

The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)
     

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Publication
Programme
2021 Volume 27 /N.S. 1/
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)