For a continuous and positive function w(λ), λ > 0 and μ a positive measure on (0, ∞) we consider the followingmonotonic integral transform
where the integral is assumed to exist forT a positive operator on a complex Hilbert spaceH. We show among others that, if β ≥ A, B ≥ α > 0, and 0 < δ ≤ (B − A)2 ≤ Δ for some constants α, β, δ, Δ, then
and
where
Applications for power function and logarithm are also provided.
R. Bhatia.Matrix Analysis.Graduate Texts in Mathematics,169.Springer-Verlag,New York,1997.xii+347 pp. ISBN:0-387-94846-5.
R. Coleman.Calculus on Normed Vector Spaces.Springer,New York,2012.
J. I. Fujii andY. Seo.On parametrized operator means dominated by power ones.Sci. Math.,1:301–306,1998.
T. Furuta.Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation.Linear Algebra Appl.,429:972–980,2008.
T. Furuta.Precise lower bound of ƒ (A)−ƒ (B) for A > B > 0 and non-constant operator monotone function ƒ on [0, ∞).J. Math. Inequal.,9(1):47–52,2015.
E.,Heinz.Beiträge zur Störungsteorie der Spektralzerlegung.Math. Ann.,123:415–438,1951.
K. Löwner.Über monotone MatrixFunktionen.Math. Z.,38:177–216,1934.
M. S. Moslehian and H., Najafi.An extension of the Löwner-Heinz inequality.Linear Algebra Appl.,437:2359–2365,2012.
H. Zuo andG. Duan.Some inequalities of operator monotone functions.J. Math. Inequal.,8(4):777–781,2014.