View More View Less
  • 1 Mathematics, College of Engineering & Science, Victoria University, , PO Box 14428, Melbourne City, MC 8001, , Australia
  • | 2 DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, & Applied Mathematics, , University of the Witwatersrand, Johannesburg, , South Africa
Open access

For a continuous and positive function w(λ), λ > 0 and μ a positive measure on (0, ∞) we consider the followingmonotonic integral transform

M(w,μ)(T) :=0w(λ)T(λ+T)1dμ(λ),

where the integral is assumed to exist forT a positive operator on a complex Hilbert spaceH. We show among others that, if β ≥ A, B ≥ α > 0, and 0 < δ ≤ (B − A)2 ≤ Δ for some constants α, β, δ, Δ, then

0124δM(w,μ)(β)M(w,μ)A+B201M(w,μ)((1t)A+tB)dt124ΔM(w,μ)(α)

and

0112δM(w,μ)(β)01M(w,μ)((1t)A+tB)dtM(w,μ)(A)+M(w,μ)(B)2112ΔM(w,μ)(α),

whereM(w,μ) is the second derivative ofM(w,μ) as a real function.

Applications for power function and logarithm are also provided.

  • [1]

    R. Bhatia.Matrix Analysis.Graduate Texts in Mathematics,169.Springer-Verlag,New York,1997.xii+347 pp. ISBN:0-387-94846-5.

  • [2]

    R. Coleman.Calculus on Normed Vector Spaces.Springer,New York,2012.

  • [3]

    J. I. Fujii andY. Seo.On parametrized operator means dominated by power ones.Sci. Math.,1:301306,1998.

  • [4]

    T. Furuta.Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation.Linear Algebra Appl.,429:972980,2008.

    • Search Google Scholar
    • Export Citation
  • [5]

    T. Furuta.Precise lower bound of ƒ (A)−ƒ (B) for A > B > 0 and non-constant operator monotone function ƒ on [0, ∞).J. Math. Inequal.,9(1):4752,2015.

    • Search Google Scholar
    • Export Citation
  • [6]

    E.,Heinz.Beiträge zur Störungsteorie der Spektralzerlegung.Math. Ann.,123:415438,1951.

  • [7]

    K. Löwner.Über monotone MatrixFunktionen.Math. Z.,38:177216,1934.

  • [8]

    M. S. Moslehian and H., Najafi.An extension of the Löwner-Heinz inequality.Linear Algebra Appl.,437:23592365,2012.

  • [9]

    H. Zuo andG. Duan.Some inequalities of operator monotone functions.J. Math. Inequal.,8(4):777781,2014.

The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)
     

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Publication
Programme
2021 Volume 27 /N.S. 1/
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)