The authors have studied the curvature of the focal conic in the isotropic plane and the form of the circle of curvature at its points has been obtained. Hereby, we discuss several properties of such circles of curvature at the points of a parabola in the isotropic plane.
E. N. Barisien. Question 835 d’examen, Mathesis, 8(2):102–103, 1898.
J. Beban-Brkić, M. Šimić and V. Volenec V. On Foci and Asymptotes of Conics in Isotropic Plane. Sarajevo J. Math., 3(16):257–266, 2007.
R. H. Graves. On the chord common to a parabola and the circle of curvature at any point. Ann.of Math., 3:50, 1887.
J. Haag. Solution of Question 644. Nouv. Ann. Math., 2(2) (1863), 415–419.
R. Kolar-Šuper, Z. Kolar-Begović, V. Volenec and J. Beban-Brkić. Metrical relationships in standard triangle in an isotropic plane. Math Commun, 10 (2005), 159–167.
K. Mack. Ueber die Krümmungskreise der Parabel. Arch. Math. Phys., 61 (1877), 385–406.
E. D’Ovidio. Solution of Question 644. Giorn. Mat., 1:285–286, 1836.
G. Recchia. Solution of Question 644. Giorn. Mat., 1:160, 1836.
E. Rouché and C. De Comberousse. Traité de géométrie, 8. éd., Gauthier-Villars, Paris 1912.
H. Sachs. Ebene isotrope Geometrie. Braunschweig/Wiesbaden, Germany: Vieweg-Verlag, 1987.
K. Strubecker. Geometrie in einer isotropen Ebene. Math Naturwiss Unterr, 1962–63 15 297–306, 343–351, 385–394.
M. Šimić, V. Volenec and J. Beban-Brkić. Curvature of the focal conic in the isotropic plane. Sarajevo J. Math., 8(18):117–123, 2010.