In this article, we study a fractional control problem that models the maximization of the profit obtained by exploiting a certain resource whose dynamics are governed by the fractional logistic equation. Due to the singularity of this problem, we develop different resolution techniques, both for the classical case and for the fractional case. We perform several numerical simulations to make a comparison between both cases.
Abbas, S., Banerjee, M., and Momani, S. Dynamical analysis of fractional-order modified logistic model. Computers & Mathematics with Applications 62, 3 (2011), 1098–1104.
Agrawal, O. P. Formulation of Euler–Lagrange equations for fractional variational problems. Journal of Mathematical Analysis and Applications 272, 1 (2002), 368–379.
Agrawal, O. P. Generalized Euler—Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative. Journal of Vibration and Control 13, 9-10 (2007), 1217–1237.
Almeida, R., Malinowska, A. B., and Torres, D. F. A fractional calculus of variations for multiple integrals with application to vibrating string. Journal of Mathematical Physics 51, 3 (2010), 033503.
Almeida, R., Malinowska, A. B., and Torres, D. F. Fractional Euler–Lagrange differential equations via Caputo derivatives. In Fractional dynamics and control. Springer, 2012, pp. 109–118.
Almeida, R., and Torres, D. F. Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Communications in Nonlinear Science and Numerical Simulation 16, 3 (2011), 1490–1500.
Amarti, Z., Nurkholipah, N., Anggriani, N., and Supriatna, A. Numerical solution of a logistic growth model for a population with Allee effect considering fuzzy initial values and fuzzy parameters. In IOP (Institute of Physics) Conference Series: Materials Science and Engineering (2018), vol. 332, p. 1.
Antunes, P. R., and Ferreira, R. A. Analysis of a class of boundary value problems depending on left and right Caputo fractional derivatives. Communications in Nonlinear Science and Numerical Simulation 48 (2017), 398–413.
Baleanu, D., Diethelm, K., Scalas, E., and Trujillo, J. J. Fractional calculus: models and numerical methods. World Scientific, 2012.
Baleanu, D., and Trujillo, J. J. On exact solutions of a class of fractional Euler–Lagrange equations. Nonlinear Dynamics 52, 4 (2008), 331–335.
Barrios, M., and Reyero, G. An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives. Statistics, Optimization & Information Computing 8(2), (2020), 590–601.
Barrios, M., Reyero, G., and Lombardi, A. Método numérico de tipo L1 para problemas variacionales fraccionarios. In Proceedings of the Congreso de Mecánica Computacional (2018), vol. XXXVI, pp. 1089–1098.
Barrios, M., Reyero, G., and Tidball, M. Estabilidad de una generalización de ecuaciones logísticas fraccionarias. In Proceedings of the VII Congreso de Matemática Aplicada, Computacional e Industrial (2019).
Bastos, N. R. Calculus of variations involving Caputo-Fabrizio fractional differentiation. Statistics, Optimization & Information Computing 6, 1 (2018), 12–21.
Bhalekar, S., and Daftardar-Gejji, V. Solving fractional-order logistic equation using a new iterative method. International Journal of Diflerential Equations 2012 (2012).
Blaszczyk, T., and Ciesielski, M. Numerical solution of Euler-Lagrange equation with Caputo derivatives. Advances in Applied Mathematics and Mechanics 9, 1 (2017), 173–185.
Caputo, M. C., and Torres, D. F. Duality for the left and right fractional derivatives. Signal Processing 107 (2015), 265–271.
Clark, C. Mathematical bioeconomics: the optimal management of renewable resources. John Wiley and Sons Inc.: New York, 1990.
Cushing, J. M. An introduction to structured population dynamics. SIAM, 1998.
Diethelm, K. The analysis of fractional di_erential equations: An application-oriented exposition using di_erential operators of Caputo type. Springer Science & Business Media, 2010.
El-Sayed, A., El-Mesiry, A., and El-Saka, H. On the fractional-order logistic equation. Applied Mathematics Letters 20, 7 (2007), 817–823.
Ferrari, A., and Marcus, E. S. Study of a fractional-order model for HIV infection of CD4+ T-cells with treatment. Journal of Fractional Calculus and Applications 11, 2 (2020), 12–22.
Goos, D., Reyero, G., Roscani, S., and Santillan Marcus, E. On the initial-boundary-value problem for the time-fractional di_usion equation on the real positive semiaxis. International Journal of Di_erential Equations 2015 (2015).
Hilfer, R., et al. Applications of fractional calculus in physics, vol. 35. World Scientific Singapore, 2000.
Jahanshahi, S., and Torres, D. F. A simple accurate method for solving fractional variational and optimal control problems. Journal of Optimization Theory and Applications 174, 1 (2017), 156–175.
Kilbas, A. A., Srivastava, H. M., and Trujillo, J. J. Theory and applications of fractional di_erential equations, vol. 204. Elsevier, 2006.
Kumar, D., Singh, J., Al _rashi, M., and Baleanu, D. Analysis of logistic equation pertaining to a new fractional derivative with non-singular kernel. Advances in Mechanical Engineering 9, 2 (2017), 1687814017690069.
Lazo, M. J., and Torres, D. F. The DuBois–Reymond fundamental lemma of the fractional calculus of variations and an Euler–Lagrange equation involving only derivatives of Caputo. Journal of Optimization Theory and Applications 156, 1 (2013), 56–67.
Li, C., and Zeng, F. Numerical methods for fractional calculus, vol. 24. CRC Press, 2015.
Malinowska, A. B., Odzijewicz, T., and Torres, D. F. Advanced methods in the fractional calculus of variations. Springer, 2015.
Malinowska, A. B., and Torres, D. F. Introduction to the fractional calculus of variations. World Scienti_c Publishing Company, 2012.
Malmir, I. A general framework for optimal control of fractional nonlinear delay systems by wavelets. Statistics, Optimization & Information Computing 8, 4 (2020), 858–875.
Mohammadi, F., Moradi, L., and Conte, D. Discrete chebyshev polynomials for solving fractional variational problems. Statistics, Optimization & Information Computing (2021).
Momani, S., and Qaralleh, R. Numerical approximations and Padé approximants for a fractional population growth model. Applied Mathematical Modelling 31, 9 (2007), 1907–1914.
Odzijewicz, T., Malinowska, A. B., and Torres, D. F. Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Analysis: Theory, Methods & Applications 75, 3 (2012), 1507–1515.
Oldham, K., and Spanier, J. The fractional calculus theory and applications of di_erentiation and integration to arbitrary order. Elsevier, 1974.
Podlubny, I. Fractional di_erential equations: an introduction to fractional derivatives, fractional di_erential equations, to methods of their solution and some of their applications. Elsevier, 1998.
Rangaig, N. A. New aspects on the fractional euler-lagrange equation with non-singular kernels. Journal of Applied Mathematics and Computational Mechanics 19, 4 (2020), 89–100.
Sethi, S. P. Nearest feasible paths in optimal control problems: Theory, examples, and counterexamples. Journal of Optimization Theory and Applications 23, 4 (1977), 563–579.
Sweilam, N., Khader, M., and Mahdy, A. Numerical studies for solving fractional-order Logistic equation. International Journal of Pure and Applied Mathematics 78, 8 (2012), 1199–1210.