View More View Less
  • 1 Departamento de Matemática, , Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Avda. Pellegrini 250, S2000BTP, Rosario, , Argentina
  • | 2 CONICET, , Avda. Pellegrini 250, S2000BTP, Rosario, , Argentina
  • | 3 CEE-M, , Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, , France
Open access

In this article, we study a fractional control problem that models the maximization of the profit obtained by exploiting a certain resource whose dynamics are governed by the fractional logistic equation. Due to the singularity of this problem, we develop different resolution techniques, both for the classical case and for the fractional case. We perform several numerical simulations to make a comparison between both cases.

  • [1]

    Abbas, S., Banerjee, M., and Momani, S. Dynamical analysis of fractional-order modified logistic model. Computers & Mathematics with Applications 62, 3 (2011), 10981104.

    • Search Google Scholar
    • Export Citation
  • [2]

    Agrawal, O. P. Formulation of Euler–Lagrange equations for fractional variational problems. Journal of Mathematical Analysis and Applications 272, 1 (2002), 368379.

    • Search Google Scholar
    • Export Citation
  • [3]

    Agrawal, O. P. Generalized Euler—Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative. Journal of Vibration and Control 13, 9-10 (2007), 12171237.

    • Search Google Scholar
    • Export Citation
  • [4]

    Almeida, R., Malinowska, A. B., and Torres, D. F. A fractional calculus of variations for multiple integrals with application to vibrating string. Journal of Mathematical Physics 51, 3 (2010), 033503.

    • Search Google Scholar
    • Export Citation
  • [5]

    Almeida, R., Malinowska, A. B., and Torres, D. F. Fractional Euler–Lagrange differential equations via Caputo derivatives. In Fractional dynamics and control. Springer, 2012, pp. 109118.

    • Search Google Scholar
    • Export Citation
  • [6]

    Almeida, R., and Torres, D. F. Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Communications in Nonlinear Science and Numerical Simulation 16, 3 (2011), 14901500.

    • Search Google Scholar
    • Export Citation
  • [7]

    Amarti, Z., Nurkholipah, N., Anggriani, N., and Supriatna, A. Numerical solution of a logistic growth model for a population with Allee effect considering fuzzy initial values and fuzzy parameters. In IOP (Institute of Physics) Conference Series: Materials Science and Engineering (2018), vol. 332, p. 1.

    • Search Google Scholar
    • Export Citation
  • [8]

    Antunes, P. R., and Ferreira, R. A. Analysis of a class of boundary value problems depending on left and right Caputo fractional derivatives. Communications in Nonlinear Science and Numerical Simulation 48 (2017), 398413.

    • Search Google Scholar
    • Export Citation
  • [9]

    Baleanu, D., Diethelm, K., Scalas, E., and Trujillo, J. J. Fractional calculus: models and numerical methods. World Scientific, 2012.

  • [10]

    Baleanu, D., and Trujillo, J. J. On exact solutions of a class of fractional Euler–Lagrange equations. Nonlinear Dynamics 52, 4 (2008), 331335.

    • Search Google Scholar
    • Export Citation
  • [11]

    Barrios, M., and Reyero, G. An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives. Statistics, Optimization & Information Computing 8(2), (2020), 590601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [12]

    Barrios, M., Reyero, G., and Lombardi, A. Método numérico de tipo L1 para problemas variacionales fraccionarios. In Proceedings of the Congreso de Mecánica Computacional (2018), vol. XXXVI, pp. 10891098.

    • Search Google Scholar
    • Export Citation
  • [13]

    Barrios, M., Reyero, G., and Tidball, M. Estabilidad de una generalización de ecuaciones logísticas fraccionarias. In Proceedings of the VII Congreso de Matemática Aplicada, Computacional e Industrial (2019).

    • Search Google Scholar
    • Export Citation
  • [14]

    Bastos, N. R. Calculus of variations involving Caputo-Fabrizio fractional differentiation. Statistics, Optimization & Information Computing 6, 1 (2018), 1221.

    • Search Google Scholar
    • Export Citation
  • [15]

    Bhalekar, S., and Daftardar-Gejji, V. Solving fractional-order logistic equation using a new iterative method. International Journal of Diflerential Equations 2012 (2012).

    • Search Google Scholar
    • Export Citation
  • [16]

    Blaszczyk, T., and Ciesielski, M. Numerical solution of Euler-Lagrange equation with Caputo derivatives. Advances in Applied Mathematics and Mechanics 9, 1 (2017), 173185.

    • Search Google Scholar
    • Export Citation
  • [17]

    Caputo, M. C., and Torres, D. F. Duality for the left and right fractional derivatives. Signal Processing 107 (2015), 265271.

  • [18]

    Clark, C. Mathematical bioeconomics: the optimal management of renewable resources. John Wiley and Sons Inc.: New York, 1990.

  • [19]

    Cushing, J. M. An introduction to structured population dynamics. SIAM, 1998.

  • [20]

    Diethelm, K. The analysis of fractional di_erential equations: An application-oriented exposition using di_erential operators of Caputo type. Springer Science & Business Media, 2010.

    • Search Google Scholar
    • Export Citation
  • [21]

    El-Sayed, A., El-Mesiry, A., and El-Saka, H. On the fractional-order logistic equation. Applied Mathematics Letters 20, 7 (2007), 817823.

    • Search Google Scholar
    • Export Citation
  • [22]

    Ferrari, A., and Marcus, E. S. Study of a fractional-order model for HIV infection of CD4+ T-cells with treatment. Journal of Fractional Calculus and Applications 11, 2 (2020), 1222.

    • Search Google Scholar
    • Export Citation
  • [23]

    Goos, D., Reyero, G., Roscani, S., and Santillan Marcus, E. On the initial-boundary-value problem for the time-fractional di_usion equation on the real positive semiaxis. International Journal of Di_erential Equations 2015 (2015).

    • Search Google Scholar
    • Export Citation
  • [24]

    Hilfer, R., et al. Applications of fractional calculus in physics, vol. 35. World Scientific Singapore, 2000.

  • [25]

    Jahanshahi, S., and Torres, D. F. A simple accurate method for solving fractional variational and optimal control problems. Journal of Optimization Theory and Applications 174, 1 (2017), 156175.

    • Search Google Scholar
    • Export Citation
  • [26]

    Kilbas, A. A., Srivastava, H. M., and Trujillo, J. J. Theory and applications of fractional di_erential equations, vol. 204. Elsevier, 2006.

    • Search Google Scholar
    • Export Citation
  • [27]

    Kumar, D., Singh, J., Al _rashi, M., and Baleanu, D. Analysis of logistic equation pertaining to a new fractional derivative with non-singular kernel. Advances in Mechanical Engineering 9, 2 (2017), 1687814017690069.

    • Search Google Scholar
    • Export Citation
  • [28]

    Lazo, M. J., and Torres, D. F. The DuBois–Reymond fundamental lemma of the fractional calculus of variations and an Euler–Lagrange equation involving only derivatives of Caputo. Journal of Optimization Theory and Applications 156, 1 (2013), 5667.

    • Search Google Scholar
    • Export Citation
  • [29]

    Li, C., and Zeng, F. Numerical methods for fractional calculus, vol. 24. CRC Press, 2015.

  • [30]

    Malinowska, A. B., Odzijewicz, T., and Torres, D. F. Advanced methods in the fractional calculus of variations. Springer, 2015.

  • [31]

    Malinowska, A. B., and Torres, D. F. Introduction to the fractional calculus of variations. World Scienti_c Publishing Company, 2012.

  • [32]

    Malmir, I. A general framework for optimal control of fractional nonlinear delay systems by wavelets. Statistics, Optimization & Information Computing 8, 4 (2020), 858875.

    • Search Google Scholar
    • Export Citation
  • [33]

    Mohammadi, F., Moradi, L., and Conte, D. Discrete chebyshev polynomials for solving fractional variational problems. Statistics, Optimization & Information Computing (2021).

    • Search Google Scholar
    • Export Citation
  • [34]

    Momani, S., and Qaralleh, R. Numerical approximations and Padé approximants for a fractional population growth model. Applied Mathematical Modelling 31, 9 (2007), 19071914.

    • Search Google Scholar
    • Export Citation
  • [35]

    Odzijewicz, T., Malinowska, A. B., and Torres, D. F. Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Analysis: Theory, Methods & Applications 75, 3 (2012), 15071515.

    • Search Google Scholar
    • Export Citation
  • [36]

    Oldham, K., and Spanier, J. The fractional calculus theory and applications of di_erentiation and integration to arbitrary order. Elsevier, 1974.

    • Search Google Scholar
    • Export Citation
  • [37]

    Podlubny, I. Fractional di_erential equations: an introduction to fractional derivatives, fractional di_erential equations, to methods of their solution and some of their applications. Elsevier, 1998.

    • Search Google Scholar
    • Export Citation
  • [38]

    Rangaig, N. A. New aspects on the fractional euler-lagrange equation with non-singular kernels. Journal of Applied Mathematics and Computational Mechanics 19, 4 (2020), 89100.

    • Search Google Scholar
    • Export Citation
  • [39]

    Sethi, S. P. Nearest feasible paths in optimal control problems: Theory, examples, and counterexamples. Journal of Optimization Theory and Applications 23, 4 (1977), 563579.

    • Search Google Scholar
    • Export Citation
  • [40]

    Sweilam, N., Khader, M., and Mahdy, A. Numerical studies for solving fractional-order Logistic equation. International Journal of Pure and Applied Mathematics 78, 8 (2012), 11991210.

    • Search Google Scholar
    • Export Citation
  • [41]

    van Brunt, B. The Calculus of Variations. Springer, 2004.

The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)
     

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)