View More View Less
  • 1 Nelson Mandela University, , Port Elizabeth, , SOUTH AFRICA
  • | 2 La Trobe University, , Melbourne, , AUSTRALIA
Open access

A congruence is defined for a matroid. This leads to suitable versions of the algebraic isomorphism theorems for matroids. As an application of the congruence theory for matroids, a version of Birkhoff’s Theorem for matroids is given which shows that every nontrivial matroid is a subdirect product of subdirectly irreducible matroids.

  • [1]

    Arhangel’skiĭ, A. V. and Wiegandt, R. Connectednesses and disconectednesses in topology. General Topology and Appl. 5 (1975), 933.

    • Search Google Scholar
    • Export Citation
  • [2]

    Broere, I., Heidema J. and Veldsman, S. Congruences and Hoehnke radicals on graphs. Discuss. Math. Graph Theory 40 (4) (2020), 10671084.

    • Search Google Scholar
    • Export Citation
  • [3]

    Fried, E. and Wiegandt, R. Connectednesses and disconnectednesses of graphs. Algebra Univ. 5 (1975), 411428.

  • [4]

    Gardner, B. J. and Wiegandt, R. The Radical Theory of Rings. Marcel Dekker Inc., 2004.

  • [5]

    Gordon, G. and McNulty, J. Matroids: a geometric introduction. University Press, Cambridge, 2012.

  • [6]

    Oxley, J. G. Matroid Theory. Oxford University Press, New York, 1992.

  • [7]

    Veldsman, S. Congruences on topological spaces with an application to radical theory. Alg. Universalis 80 (2019), article 25.

  • [8]

    Veldsman, S. Connectednesses of graphs and congruences. Asian-European Journal of Mathematics 14(10), (2021).

  • [9]

    Veldsman, S. Topological connectednesses and congruences. Quaestiones Mathematicae. (2020).

The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)
     

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)