Let (M, [g]) be a Weyl manifold and TM be its tangent bundle equipped with Riemannian g−natural metrics which are linear combinations of Sasaki, horizontal and vertical lifts of the base metric with constant coefficients. The aim of this paper is to construct a Weyl structure on TM and to show that TM cannot be Einstein-Weyl even if (M, g) is fiat.
Abbassi, M. T. K. g-natural metrics: New horizons in the geometry of tangent bundles of Riemannian manifolds. Note di Matematica 28 (2009), 6–35.
Abbassi, M. T. K., and Sarih, M. On Riemannian g-natural metrics of the form agS+bgH+cgV on the tangent bundle of a Riemannian manifold (M,g). Mediterranean Journal of Mathematics 1 (2005), 19–43.
Abbassi, M. T. K., and Sarih, M. On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds. Differential Geometry and Its Applications 22, 1 (2005), 19–47.
Bejan, C. L., and Gul, I. Sasaki metric on the tangent bundle of a Weyl manifold. Publications de l’Institut Mathématique (N.S) 103 (117) (2018), 25–32.
Bejan, C. L., Meric, E. S., and Kilic, E. Gradient Weyl Ricci soliton. Turkish Journal of Mathematics 44 (2020), 1137–1145.
Calderbank, D. M. J., and Pedersen, H. Einstein-Weyl geometry. Surveys in Di_erential Geometry 6 (2001), 387–423.
Higa, T. Weyl manifolds and Einstein-Weyl manifolds. Commentari Mathematici Universitatis Sancti Pauli 42, 2 (1993), 143–160.
Kowalski, O., and Sekizawa, M. Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles. Bulletin of Tokyo Gakugei University 40 (1988), 1–29.
Pedersen, H., and Tod, K. P. Three dimensional Einstein-Weyl geometry. Advances in Mathematics 97 (1993), 74–109.
Scholz, E. The unexpected resurgence of Weyl geometry in late 20th-century physics. In Beyond Einstein, D. E. Rowe, Ed. Birkhauser, Basel, 2018, pp. 261–360.
Yano, K., and Ishihara, S. Tangent and cotangent bundles. Marcel Dekker Inc, New York, 1973.