Author:
Murat Altunbaş Department of Mathematics, Erzincan Binali Yıldırım University, Yalnızbağ Campus, Erzincan, Turkey

Search for other papers by Murat Altunbaş in
Current site
Google Scholar
PubMed
Close
Open access

Let (M, [g]) be a Weyl manifold and TM be its tangent bundle equipped with Riemannian g−natural metrics which are linear combinations of Sasaki, horizontal and vertical lifts of the base metric with constant coefficients. The aim of this paper is to construct a Weyl structure on TM and to show that TM cannot be Einstein-Weyl even if (M, g) is fiat.

  • [1]

    Abbassi, M. T. K. g-natural metrics: New horizons in the geometry of tangent bundles of Riemannian manifolds. Note di Matematica 28 (2009), 635.

    • Search Google Scholar
    • Export Citation
  • [2]

    Abbassi, M. T. K., and Sarih, M. On Riemannian g-natural metrics of the form agS+bgH+cgV on the tangent bundle of a Riemannian manifold (M,g). Mediterranean Journal of Mathematics 1 (2005), 1943.

    • Search Google Scholar
    • Export Citation
  • [3]

    Abbassi, M. T. K., and Sarih, M. On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds. Differential Geometry and Its Applications 22, 1 (2005), 1947.

    • Search Google Scholar
    • Export Citation
  • [4]

    Bejan, C. L., and Gul, I. Sasaki metric on the tangent bundle of a Weyl manifold. Publications de l’Institut Mathématique (N.S) 103 (117) (2018), 2532.

    • Search Google Scholar
    • Export Citation
  • [5]

    Bejan, C. L., Meric, E. S., and Kilic, E. Gradient Weyl Ricci soliton. Turkish Journal of Mathematics 44 (2020), 11371145.

  • [6]

    Calderbank, D. M. J., and Pedersen, H. Einstein-Weyl geometry. Surveys in Di_erential Geometry 6 (2001), 387423.

  • [7]

    Higa, T. Weyl manifolds and Einstein-Weyl manifolds. Commentari Mathematici Universitatis Sancti Pauli 42, 2 (1993), 143160.

  • [8]

    Kowalski, O., and Sekizawa, M. Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles. Bulletin of Tokyo Gakugei University 40 (1988), 129.

    • Search Google Scholar
    • Export Citation
  • [9]

    Pedersen, H., and Tod, K. P. Three dimensional Einstein-Weyl geometry. Advances in Mathematics 97 (1993), 74109.

  • [10]

    Scholz, E. The unexpected resurgence of Weyl geometry in late 20th-century physics. In Beyond Einstein, D. E. Rowe, Ed. Birkhauser, Basel, 2018, pp. 261360.

    • Search Google Scholar
    • Export Citation
  • [11]

    Yano, K., and Ishihara, S. Tangent and cotangent bundles. Marcel Dekker Inc, New York, 1973.

  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • † István GYŐRI, University of Pannonia, Veszprém, Hungary
  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)