In this paper we work out a Riemann–von Mangoldt type formula for the summatory function
Al-Maamori, F., and Hilberdink, T. W. An example in Beurling’s theory of generalized primes. Acta Arith. 168, 5 (2015), 383–396.
Beurling, A. Analyse de la loi asymptotique de la distribution des nombres premiers généralisés I. Acta Math. 68, (1937), 255–291.
Broucke, F., Debruyne G., and Vindas, J. Beurling integers with RH and large oscillation. Adv. Math. 370 (2020), Article no. 107240, 38 pp.
Davenport, H. Multiplicative number theory, Lectures in advanced mathematics, 1, Markham Pubishing C., Chicago, 1967.
Debruyne G., and Vindas, J. On PNT equivalences for Beurling numbers. Monatsh. Math. 184, 3 (2017), 401–424.
Debruyne, G., Schlage-Puchta, J.-C., and Vindas, J. Some examples in the theory of Beurling’s generalized prime numbers. Acta Arith. 176, 2 (2016), 101–129.
Diamond, H. G., Montgomery, H. L., and Vorhauer, U. Beurling primes with large oscillation. Math. Ann. 334, 1 (2006) 1–36.
Diamond, H. G., and Zhang, W.-B. Optimality of Chebyshev bounds for Beurling generalized numbers. Acta Arith. 160, 2 (2013), 259–275.
Diamond, H. G., and Zhang, W.-B. Chebyshev bounds for Beurling numbers. Acta Arith. 160, 2 (2013), 143–157.
Diamond, H. G., and Zhang, W.-B. Prime number theorem equivalences and nonequivalences. Mathematika 63, 3 (2017), 852–862.
Diamond, H. G., and Zhang, W.-B. Beurling generalized numbers. Mathematical Surveys and Monographs, 213. American Mathematical Society, Providence, RI, 2016. xi+244 pp.
Hilberdink, T. W. Generalised prime systems with periodic integer counting function. Acta Arith. 152, 3 (2012), 217–241.
Hilberdink, T. W. Well-behaved Beurling primes and integers. J. Number Theory 112, 2 (2005), 332–344.
Holland, A. S. B. Inroduction to the theory of entire functions. Academic Press, New York and London, 1973.
Kahane, J.-P. Le rôle des algebres Ade Wiener, A∞ de Beurling et H1 de Sobolev dans la théorie des nombres premiers généralisés. Ann. Inst. Fourier (Grenoble) 48, 3 (1998), 611–648.
Knopfmacher, J. Abstract analytic number theory. North Holland & Elsevier, Amsterdam– Oxford & New York, 1975. (Second edition: Dover Books on Advanced Mathematics. Dover Publications, Inc., New York, 1990. xii+336 pp.)
Littlewood, J. E. Mathematical notes (12). An inequality for a sum of cosines. J. London Math. Soc. 12, (1937), 217–222.
Neamah, A. A.; Hilberdink, T. W. The average order of the Möbius function for Beurling primes. Int. J. Number Theory 16, 5 (2020), 1005–1011.
Pintz, J. On the remainder term of the prime number formula. I. On a problem of Littlewood. Acta Arith. 36, (1980), 341–365.
Pintz, J. Distribution of the zeros of the Riemann zeta function and oscillations of the error term in the asymptotic law of the distribution of prime numbers. (Russian) Tr. Mat. Inst. Steklova 296, (2017), Analiticheskaya i Kombinatornaya Teoriya Chisel, 207–219. English version published in Proc. Steklov Inst. Math. 296, 1 (2017), 198–210.
Revesz, Sz. Gy. Effective oscillation theorems for a general class of real-valued remainder terms. Acta Arith. XLIX, (1988), 482–505.
Revesz, Sz. Gy. On Beurling’s prime number theorem, Periodica Math. Hungar. 28, 3 (1994), 195–210.
Revesz, Sz. Gy. Distribution of Beurling primes and zeroes of the Beurling zeta function I. Distribution of the zeroes of the zeta function of Beurling. ArXiv preprint no. arXiv:2012.09045, see at https://arxiv.org/abs/arXiv:2012.09045.
Tenenbaum, G. Introduction à la théorie analytique et probabiliste des nombres. Cours Spécialisés, Société Mathématiqué de France, 1, 1995.
Turan, P. On the remainder term of the prime-number formula, I. Acta Math. Acad. Hungar. 1, (1950), 48–63.
Vindas, J. Chebyshev estimates for Beurling’s generalized prime numbers. I. J. Number Theory 132, (2012), 2371–2376.
Zhang, W.-B. Extensions of Beurling’s prime number theorem. Int. J. Number Theory 11, 5 (2015), 1589–1616.
Zhang, W.-B. Beurling primes with RH and Beurling primes with large oscillation. Math. Ann. 337, 3 (2007), 671–704.
Zhang, W.-B. Chebyshev type estimates for Beurling generalized prime numbers. II. Trans. Amer. Math. Soc. 337, 2 (1993), 651–675.