View More View Less
  • 1 Alfréd Rényi Institute of Mathematics, , Reáltanoda u. 13-15, H-1053 Budapest, , Hungary
Open access

In this paper we work out a Riemann–von Mangoldt type formula for the summatory function ψx:= gG,gxΛGg, where G is an arithmetical semigroup (a Beurling generalized system of integers) and ΛG is the corresponding von Mangoldt function attaining logp for g =pk with a prime element pG and zero otherwise. On the way towards this formula, we prove explicit estimates on the Beurling zeta function ζG , belonging to G, to the number of zeroes of ζG in various regions, in particular within the critical strip where the analytic continuation exists, and to the magnitude of the logarithmic derivative of ζG, under the sole additional assumption that Knopfmacher’s Axiom A is satisfied. We also construct a technically useful broken line contour to which the technic of integral transformation can be well applied. The whole work serves as a first step towards a further study of the distribution of zeros of the Beurling zeta function, providing appropriate zero density and zero clustering estimates, to be presented in the continuation of this paper.

  • [1]

    Al-Maamori, F., and Hilberdink, T. W. An example in Beurling’s theory of generalized primes. Acta Arith. 168, 5 (2015), 383396.

  • [2]

    Beurling, A. Analyse de la loi asymptotique de la distribution des nombres premiers généralisés I. Acta Math. 68, (1937), 255291.

  • [3]

    Broucke, F., Debruyne G., and Vindas, J. Beurling integers with RH and large oscillation. Adv. Math. 370 (2020), Article no. 107240, 38 pp.

    • Search Google Scholar
    • Export Citation
  • [4]

    Davenport, H. Multiplicative number theory, Lectures in advanced mathematics, 1, Markham Pubishing C., Chicago, 1967.

  • [5]

    Debruyne G., and Vindas, J. On PNT equivalences for Beurling numbers. Monatsh. Math. 184, 3 (2017), 401424.

  • [6]

    Debruyne, G., Schlage-Puchta, J.-C., and Vindas, J. Some examples in the theory of Beurling’s generalized prime numbers. Acta Arith. 176, 2 (2016), 101129.

    • Search Google Scholar
    • Export Citation
  • [7]

    Diamond, H. G., Montgomery, H. L., and Vorhauer, U. Beurling primes with large oscillation. Math. Ann. 334, 1 (2006) 136.

  • [8]

    Diamond, H. G., and Zhang, W.-B. Optimality of Chebyshev bounds for Beurling generalized numbers. Acta Arith. 160, 2 (2013), 259275.

  • [9]

    Diamond, H. G., and Zhang, W.-B. Chebyshev bounds for Beurling numbers. Acta Arith. 160, 2 (2013), 143157.

  • [10]

    Diamond, H. G., and Zhang, W.-B. Prime number theorem equivalences and nonequivalences. Mathematika 63, 3 (2017), 852862.

  • [11]

    Diamond, H. G., and Zhang, W.-B. Beurling generalized numbers. Mathematical Surveys and Monographs, 213. American Mathematical Society, Providence, RI, 2016. xi+244 pp.

    • Search Google Scholar
    • Export Citation
  • [12]

    Hilberdink, T. W. Generalised prime systems with periodic integer counting function. Acta Arith. 152, 3 (2012), 217241.

  • [13]

    Hilberdink, T. W. Well-behaved Beurling primes and integers. J. Number Theory 112, 2 (2005), 332344.

  • [14]

    Holland, A. S. B. Inroduction to the theory of entire functions. Academic Press, New York and London, 1973.

  • [15]

    Kahane, J.-P. Le rôle des algebres Ade Wiener, A de Beurling et H1 de Sobolev dans la théorie des nombres premiers généralisés. Ann. Inst. Fourier (Grenoble) 48, 3 (1998), 611648.

    • Search Google Scholar
    • Export Citation
  • [16]

    Knopfmacher, J. Abstract analytic number theory. North Holland & Elsevier, Amsterdam– Oxford & New York, 1975. (Second edition: Dover Books on Advanced Mathematics. Dover Publications, Inc., New York, 1990. xii+336 pp.)

    • Search Google Scholar
    • Export Citation
  • [17]

    Littlewood, J. E. Mathematical notes (12). An inequality for a sum of cosines. J. London Math. Soc. 12, (1937), 217222.

  • [18]

    Neamah, A. A.; Hilberdink, T. W. The average order of the Möbius function for Beurling primes. Int. J. Number Theory 16, 5 (2020), 10051011.

    • Search Google Scholar
    • Export Citation
  • [19]

    Pintz, J. On the remainder term of the prime number formula. I. On a problem of Littlewood. Acta Arith. 36, (1980), 341365.

  • [20]

    Pintz, J. Distribution of the zeros of the Riemann zeta function and oscillations of the error term in the asymptotic law of the distribution of prime numbers. (Russian) Tr. Mat. Inst. Steklova 296, (2017), Analiticheskaya i Kombinatornaya Teoriya Chisel, 207–219. English version published in Proc. Steklov Inst. Math. 296, 1 (2017), 198210.

    • Search Google Scholar
    • Export Citation
  • [21]

    Revesz, Sz. Gy. Effective oscillation theorems for a general class of real-valued remainder terms. Acta Arith. XLIX, (1988), 482505.

  • [22]

    Revesz, Sz. Gy. On Beurling’s prime number theorem, Periodica Math. Hungar. 28, 3 (1994), 195210.

  • [23]

    Revesz, Sz. Gy. Distribution of Beurling primes and zeroes of the Beurling zeta function I. Distribution of the zeroes of the zeta function of Beurling. ArXiv preprint no. arXiv:2012.09045, see at https://arxiv.org/abs/arXiv:2012.09045.

    • Search Google Scholar
    • Export Citation
  • [24]

    Tenenbaum, G. Introduction à la théorie analytique et probabiliste des nombres. Cours Spécialisés, Société Mathématiqué de France, 1, 1995.

    • Search Google Scholar
    • Export Citation
  • [25]

    Turan, P. On the remainder term of the prime-number formula, I. Acta Math. Acad. Hungar. 1, (1950), 4863.

  • [26]

    Vindas, J. Chebyshev estimates for Beurling’s generalized prime numbers. I. J. Number Theory 132, (2012), 23712376.

  • [27]

    Zhang, W.-B. Extensions of Beurling’s prime number theorem. Int. J. Number Theory 11, 5 (2015), 15891616.

  • [28]

    Zhang, W.-B. Beurling primes with RH and Beurling primes with large oscillation. Math. Ann. 337, 3 (2007), 671704.

  • [29]

    Zhang, W.-B. Chebyshev type estimates for Beurling generalized prime numbers. II. Trans. Amer. Math. Soc. 337, 2 (1993), 651675.

The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)
     

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)